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Abstract 
I propose a model wherein a system is represented by a finite sequence of 

natural numbers. These numbers are thought of as population numbers in statistical 

ensemble formed as a sample with replacement of entities (microstates) from some 

abstract set. I derive the concepts of energy and of temperature. I show an analogy 

between energy spectra computed from the model and energy spectra of some known 

constructs, such as particle in a box and quantum harmonic oscillator. The presented 

model replaces the concept of wave function with knowledge vector. I derive 

Schrödinger-type equation for knowledge vector and discuss principal differences with 

Schrödinger equation. The model retains major QM hallmarks such as wave-particle 

duality, violation of Bell’s inequalities, quantum Zeno effect, uncertainty relations, 

while avoiding controversial concept of wave function collapse. Unlike standard QM 

and Newtonian mechanics, the presented model has the Second Law of 

Thermodynamics built-in; in particular, it is not invariant with respect to time reversal. 
 

 As for prophecies, they will pass away; as for tongues, 

they will cease; as for knowledge, it will pass away. 

1 Corinthians 13:8 

 

1. PREAMBLE 

Physical properties, such as temperature, energy, entropy, pressure, and phenomena such as 

Bose-Einstein condensation are exhibited not just by “real” physical systems, but also by virtual 

entities such as binary or character strings [1, 2, 3], world wide web [4], business and citation 

networks [5, 6], economy [7, 8, 9]. A characteristic quantum mechanical behavior has been 

observed in entities as different as electrons, electromagnetic waves, and nanomechanical 

oscillators [10]. 

There must be an underlying mechanism which accounts for the grand commonality in 

observed behavior of vastly different entities. Scientists have recently discovered that various 

complex systems have an underlying architecture governed by shared organizing principles [6]. 

The …present-day quantum mechanics is a limiting case of some more unified scheme… Such a 

theory would have to provide, as an appropriate limit, something equivalent to a unitarily evolving 

state vector |𝜓⟩ [11]. 

There are two factors present in all theories. One is the all-pervading time, and the other is the 

observer’s mind. A successful grand commonality model must explain the nature of time, specify 

mechanism of how the physical reality projects onto the mind of observer, and relate time to that 

projection. A grand commonality theory may not contain fundamental physical constants. Any 

model containing such constants is deemed incomplete. 

I call physical reality (i.e. the “real” world) the underlying system. The underlying system is 

represented by its state vector 𝒙. The measuring device defines the basis. Knowledge vector 𝒚 is 

the state vector 𝒙 represented in the basis. The concept of knowledge vector may seem similar to 

wave function in Niels Bohr interpretation whence the wave function is not to be taken seriously 

as describing a quantum-level physical reality, but is to be regarded as merely referring to our 

(maximal) “knowledge” of a physical system… [11]. In the presented framework, the action of the 

https://www.biblegateway.com/passage/?search=1%20Corinthians+13:8&version=ESV
https://en.wikipedia.org/wiki/Dimensionless_physical_constant


measuring device does not affect the state of underlying system, only the knowledge vector. The 

model does not exhibit the so-called measurement problem [12]. 

The state vector has an associated value of proper time [13] which serves as the ordering 

parameter for different states of underlying system. State vector is completely defined by a finite 

sequence of natural numbers (𝑛𝑖). I call {𝑛𝑖} the population numbers of microstates {𝒊} from set 

𝑮. I do not speculate what is microstate, or set 𝑮, leaving them as abstract notions. I think of 

sequence (𝑛𝑖) as a sample with replacement of microstates {𝒊} ∈ 𝑮. I call such sample the 

statistical ensemble. Henceforth the notion of physical reality is reduced to a sequence of natural 

numbers (𝑛𝑖) which do not have to be physicalized in any way. 

The proper time has been previously defined [13] as the ordering parameter for 

the states of statistical ensemble: 
𝑡 = ln𝑁 , where 𝑁 =∑𝑛𝑖 

𝑖∈𝑮

 (1) 

The proper time is quantized with time quantum 𝜏 = ∆(ln𝑁) = 1/𝑁. I combine this definition of 

time with the following rule on time increments: 

The positive ∆𝑡 > 0 direction of time change is when: 

, where all ∆𝑛𝑖 are non-negative. 
∆𝑁 = ∆𝑁|∆𝑡>0 ≡ ∑ ∆𝑛𝑖

∆𝑛𝑖>0

 
(2) 

The negative ∆𝑡 < 0 direction of time change is when: 

, where all ∆𝑛𝑖 are non-positive. 
∆𝑁 = ∆𝑁|∆𝑡<0 ≡ ∑ ∆𝑛𝑖

∆𝑛𝑖<0

 (3) 

If (𝑛𝑖) and (𝑛𝑖
′) are such that some ∆𝑛𝑖 = 𝑛𝑖

′ − 𝑛𝑖 are positive and some are negative, then state 

vectors (𝑛𝑖) and (𝑛𝑖
′) do not connect by timeline. There can be multiple timelines (histories) 

connecting two state vectors, as well as none. 

For the given state vector, a choice of observation basis defines the knowledge vector. An 

observation basis associated with the measuring apparatus is the preferred basis, much discussed 

recently [14]. 

Commonly, the [Schrödinger] equation is solved in time-forward manner: given known state, 

find conditional probabilities of [future] measurement outcomes. Similarly, if same equation is 

solved backward in time, one would find the past too is only defined in terms of conditional 

probabilities, expressed as a modulus square of correlation function of two state vectors. 

Any known fact from the past is deemed an artifact of the present state. What observer thinks 

as the past, the present, or the future is represented by the knowledge vectors in the present. This 

stance aligns with empirical evidence, e.g. from delayed-choice experiments [15], suggesting the 

history is determined by the setup at present. Thus, there is only present. A statistical correlation 

between knowledge vectors, having ∆𝑡 as correlation distance, is perceived as time evolution. 

To further develop the model, I derive the notions of energy in Section 2, and of temperature 

in Section 3. In Section 4 I derive the equation of motion for knowledge vector and discuss its 

similarity and differences with Schrödinger equation. I define the concept of measurement. I touch 

upon the notions of open/closed systems; conservation of energy; Bell’s inequalities; Haag’s 

theorem; quantum Zeno effect; and the notion of memory. I show the condition for quantum vs. 

classical behavior is the existence of predictable phase relationship between knowledge vectors. 

 

2. ENERGY 

The base tenet of the model is that the sequence (𝑛𝑖∈𝑮) completely defines the underlying 

system. I call (𝑛𝑖) sequence the mode. Since mode is formed as a sample with replacement, the 

[unconditional] probability of finding underlying system in a particular mode is given by the 

https://en.wikipedia.org/wiki/Measurement_problem


multinomial probability mass function: 
𝑃((𝑛𝑖);  𝑁, (𝑝𝑖)) = 𝑁!∏

𝑝𝑖
𝑛𝑖

𝑛𝑖!
𝒊∈𝑮

 (4) 

, where 𝑝𝑖 is the probability of sampling microstate  𝒊  from set  𝑮.  Within the context of the model  

𝑝𝑖 =
1

𝑀
    ∀  𝒊 ∈ 𝑮 (5) 

, where 𝑀 is the cardinality of set 𝑮. I introduce functions ℰ, 𝜇 as follows: 

ln 𝑃((𝑛𝑖);  𝑁, (𝑝𝑖)) = 𝜇(𝑁, (𝑝𝑖)) − ℰ((𝑛𝑖);  𝑁, (𝑝𝑖)) (6) 

𝜇(𝑁, (𝑝𝑖)) = ln𝑃((𝑛𝑖 ≡ 𝑁 ∙ 𝑝𝑖);  𝑁, (𝑝𝑖)) = 𝑁 ∙ [𝐻Ω(𝑁, (𝑝𝑖)) − 𝐻S(𝑝𝑖)] (7) 

𝐻Ω(𝑁, (𝑝𝑖)) =
1

𝑁
[ln Γ(𝑁 + 1) −∑ln Γ(𝑁𝑝𝑖 + 1)

𝑖∈𝑮

] (8) 

ℰ((𝑛𝑖);  𝑁, (𝑝𝑖)) = 𝜇(𝑁, (𝑝𝑖)) − ln 𝑃((𝑛𝑖);  𝑁, (𝑝𝑖)) = 

∑[ln
Γ(𝑛𝑖 + 1)

Γ(𝑁𝑝𝑖 + 1)
+ (𝑁𝑝𝑖 − 𝑛𝑖) ∙ ln 𝑝𝑖]

𝑖∈𝑮

 
(9) 

ℰ((𝑛𝑖);  𝑁, (𝑝𝑖)) ≥ 0;        ℰ((𝑛𝑖 = 𝑁𝑝𝑖 ∀  𝒊 ∈ 𝑮);  𝑁, (𝑝𝑖)) = 0 (10) 

, where Γ(𝑥) is gamma function, 𝐻S((𝑝𝑖)) = −∑𝑝𝑖 ln 𝑝𝑖
𝑖∈𝑮

 is Shannon’s [16] entropy, and 

𝐻Ω(𝑁, (𝑝𝑖)) is equilibrium microstate entropy [17].  With (7-9), I rewrite (4) as 

 𝑃((𝑛𝑖);  𝑁, (𝑝𝑖)) = 𝑒𝑥𝑝 (𝜇(𝑁, (𝑝𝑖)) − ℰ((𝑛𝑖);𝑁, (𝑝𝑖))) (11) 

From (11) the probability of observing statistical ensemble of N microstates in a particular mode 

is determined solely by the value of ℰ((𝑛𝑖); 𝑁, (𝑝𝑖)). If I’m to use ℰ as a single independent 

variable, I can write the probability mass function in ℰ domain as: 

𝑃(ℰ;𝑁, (𝑝𝑖)) = 𝑔(ℰ;𝑁, (𝑝𝑖)) ∙ 𝑒𝑥𝑝(𝜇(𝑁, (𝑝𝑖)) − ℰ) (12) 

Here 𝑔(ℰ;𝑁, (𝑝𝑖)) is the multiplicity (degeneracy) of the given ℰ value1, i.e. a number of ways 

the same value of ℰ is realized by different modes with given parameters 𝑁, (𝑝𝑖). There is no 

analytic expression for 𝑔(ℰ;𝑁, (𝑝𝑖)), however, it is numerically computable. Table 1 contains ℰ, 

𝑔(ℰ;𝑁, (𝑝𝑖)) values calculated for several sets of parameters 𝑁, (𝑝𝑖). Figures 1-2 show distinct 

values of ℰ in increasing order for several values of parameter 𝑁 and probabilities (5) calculated 

from (9), using algorithm [18] for finding partitions (𝑛𝑖) of integer 𝑁 into ≤ 𝑀 parts [19]. The 

sum of 𝑔(ℰ;𝑁, (𝑝𝑖)) over all distinct values of ℰ is the total number of modes. It is equal to the 

number of ways to distribute 𝑁 indistinguishable balls into 𝑀 distinguishable cells: 

𝐿(𝑁,𝑀) =∑𝑔(ℰ;𝑁, (𝑝𝑖))
{ℰ}

=
(𝑁 +𝑀 − 1)!

𝑁! (𝑀 − 1)!
 (13) 

, where sum is over all distinct values of ℰ. Figure 3 shows the total number 𝐿(𝑁,𝑀) of 

distinguishable states of statistical ensemble, and the total number of distinct values {ℰ} as 

                                                 
1 For a case of statistical ensemble with microstate probabilities (5); the multiplicity of ℰ is the multiplicity of the 

value of multinomial coefficient in (4) [80] 



functions of 𝑁 for two sets of probabilities (5), calculated from (13) and (9) using algorithm [18]. 

The graphs demonstrate the following: 

• For probabilities (5), the average degeneracy of {ℰ} levels approaches  𝑀!  as 𝑁 → ∞. 

This statement can be expressed as: 
𝑀! ∙ lim

𝑁→∞
∑1
{ℰ}

=
(𝑁 +𝑀 − 1)!

𝑁! (𝑀 − 1)!
 (14) 

Here ∑ 1{ℰ}  sum represents the number of distinct values of ℰ for the given parameters 𝑁,𝑀. As 

𝑔(ℰ;𝑁, (𝑝𝑖)) is not a smooth function of ℰ (see Table 1), there could be no true probability density 

in ℰ domain. However, I shall derive pseudo probability density to be used in expressions 

involving integration by ℰ in thermodynamic limit. To be able to use analytical math, I have to 

extend (7-11) from discrete variables (𝑛𝑖) to continuous domain. I call 

• Thermodynamic limit is the approximation of large population numbers: 

𝑛𝑖 ≫ 1  ∀  𝒊 ∈ 𝑮 
(15) 

In thermodynamic limit, I shall use Stirling’s approximation for factorials 

ln 𝑛! ≈
1

2
ln 2𝜋𝑛 + 𝑛 ln 𝑛 − 𝑛 (16) 

With (5) it allows rewriting of (7-9) as 

𝜇(𝑁, (𝑝𝑖)) ≅ −
1

2
[(𝑀 − 1) ∙ ln 2𝜋𝑁 + ln∏𝑝𝑖

𝒊∈𝑮

] = 𝜇(𝑁,𝑀) =
𝑀

2
ln𝑀 −

𝑀 − 1

2
ln 2𝜋𝑁 (17) 

 ℰ((𝑛𝑖);  𝑁, (𝑝𝑖)) ≅∑(𝑛𝑖 +
1

2
)

𝒊∈𝑮

∙ ln
𝑛𝑖
𝑁𝑝𝑖

=∑(𝑛𝑖 +
1

2
)

𝒊∈𝑮

∙ ln 𝑛𝑖 − (𝑁 +
𝑀

2
) ln

𝑁

𝑀
 (18) 

Figure 4 demonstrates function 𝜇(𝑁, (𝑝𝑖)) calculated for two sets of parameters (𝑝𝑖) using exact 

expression (7) and approximate formula (17). In thermodynamic limit, ℰ is a smooth function of 
(𝑛𝑖) approximated by positive semi-definite quadratic form of  {𝑛𝑖 − 𝑁𝑝𝑖}  in  the  vicinity  of  its 

minimum (10): ℇ ≅∑𝑏𝑖,𝑗 ∙ (𝑛𝑖 − 𝑁𝑝𝑖) ∙ (𝑛𝑗 − 𝑁𝑝𝑗)
𝒊∈𝑮
𝒋∈𝑮

 
(19) 

Knowing the covariance matrix [20] of multinomial distribution (4) allows reduction of (19) to 

diagonal form. The covariance matrix, divided by 𝑁 is: 

 𝜎𝑖𝑗 = 𝛿𝑖𝑗 ∙ 𝑝𝑗 − 𝑝𝑖 ∙ 𝑝𝑗 , where 𝛿𝑖=𝑗 = 1 ; 𝛿𝑖≠𝑗 = 0 (20) 

The rank of 𝜎𝑖𝑗 is 𝑀 − 1. If 𝑑𝑖𝑗 is a diagonal form of 𝜎𝑖𝑗, the eigenvalues of  𝜎𝑖𝑗 are 𝑑𝑖 = 𝑑𝑖𝑖: 

𝑑𝑖𝑗 = 𝑑𝑖𝑎𝑔(𝜎𝑖𝑗) ; 𝑑𝑖 = 𝑑𝑖𝑖 ; 𝑑1 ≡ 0 ; 𝑑𝑖>1 > 0 (21) 

For equal probabilities (5),   𝑑𝑖>1 = 1 𝑀⁄ .  I transform to new discrete variables: 

 
𝑥𝑖>1 =∑(𝑛𝑗 − 𝑁𝑝𝑗)

Θ𝑗𝑖

√𝑑𝑖𝒋∈𝑮

= √𝑀∑(𝑛𝑗 −
𝑁

𝑀
) ∙ Θ𝑗𝑖

𝒋∈𝑮

 ; 𝑥1 ≡ 0 (22) 

, where Θ𝑖𝑗 is matrix with columns as unit eigenvectors of 𝜎𝑖𝑗 corresponding to eigenvalues (21). 

In case of 𝑀 = 3 and probabilities (5) 

Θ𝑖𝑗 = [

1 √3⁄ −1 √6⁄ 1 √2⁄

1 √3⁄ −1 √6⁄ −1 √2⁄

1 √3⁄ √2 3⁄ 0

] (23) 



The eigenvector Θ𝑖1 corresponding to eigenvalue 𝑑1 ≡ 0 is perpendicular to hyper-plane (1) 

defined by ∑ 𝑛𝑖 𝑖∈𝑮 = 𝑁 in M-dimensional space of (𝑛𝑖) coordinates, while vector (𝑛𝑖 − 𝑁𝑝𝑖) is 

parallel to the hyper-plane. Therefore, 𝑥1 ≡ 0 in (22). I rewrite (19) in terms of new variables {𝑥𝑖} 
as 

ℇ =
1

2𝑁
∑𝑥𝑖

2

𝒊∈𝑮

=
⟨𝒙|𝒙⟩

2𝑁
 (24) 

I call {𝑥𝑖} the canonical variables of statistical ensemble, and 𝒙 = (𝑥𝑖) the canonical state vector. 

I call parameter ℰ the energy of statistical ensemble. If statistical ensemble of 𝑁 microstates is 

divided into 𝐾 sub-ensembles of {𝑁𝑘} microstates as 

𝑁 =∑𝑁𝑘

𝐾

𝑘=1

=∑∑(𝑛𝑖)𝑘
𝒊∈𝑮

𝐾

𝑘=1

 (25) 

, then, from (22,25), the relation between canonical vector 𝒙 of the larger system and vectors {𝒙𝑘} 
of subsystems is: 

𝒙 =∑𝒙𝑘

𝐾

𝑘=1

 (26) 

I may also call 𝒙 the canonical momentum of the system. Relation (26) states the total momentum 

𝒙 of the system equals the sum of momenta of constituent parts. The expressions (22,24) lead to 

the following time evolution laws for 𝒙, ℇ, with time 𝑡 defined as proper time (1): 

|𝒙(𝑁 + 1) − 𝒙(𝑁)|2 = 𝑀 − 1 ; 〈
𝜕𝒙

𝜕𝑡
〉 = 0 ; 〈

𝜕𝒙2

𝜕𝑡
〉 = (𝑀 − 1) ∙ 𝑁 

(27) 

〈
𝜕ℇ

𝜕𝑡
〉 =

𝑀 − 1

2
− ℇ ; 〈ℇ(𝑡)〉 =

𝑀 − 1

2
+ (ℇ(𝑡0) −

𝑀 − 1

2
) ∙ 𝑒𝑥𝑝(𝑡0 − 𝑡) 

, where 〈𝑞〉 designates the expectation value of 𝑞. The canonical vector 𝒙 constitutes the knowledge 

vector in the basis of eigenvectors of 𝜎𝑖𝑗. As the basis is associated with an observer, basis vectors 

may differ from eigenvectors of 𝜎𝑖𝑗. If the basis is obtained from eigenvectors of 𝜎𝑖𝑗 via an 

orthogonal transformation, linear form (26), and quadratic form (24) are preserved. Hence, I state 

the conservation of energy law as follows: the energy of the system is conserved under orthogonal 

transformations of the basis. In layman’s terms, it means the energy may change from one form 

to another (e.g. from potential into kinetic), while total energy of the system is conserved under 

such transformation. The conservation of energy law in this form differs from the common one 

(Conservation of Energy, Wikipedia) which “… states that the total energy of an isolated system 

remains … conserved over time”. From (27) it follows the expectation value of energy 〈ℇ(𝑡)〉 is 

not conserved over time. However, in scenarios drawn from classical physics, the exponent in (27) 

has much longer characteristic timescale than orthogonal transformation of observation basis. This 

condition is equivalent to (∆𝑡 ≅ ∆𝑁/𝑁) ≪ 1, i.e. to thermodynamic limit case. 

Figure 5 demonstrates function √ℰ/𝑁 calculated for two sets of parameters (𝑝𝑖) using 

exact expression (9) and approximations (18), and (24). I plotted √ℰ/𝑁 instead of ℰ to show 

asymptotic behavior of (9) and (18) in comparison with quadratic form (24). Using (17) and (24) 

I obtain multivariate normal approximation [20] to multinomial distribution (4) as 

𝑃((𝑥𝑖);  𝑁, (𝑝𝑖)) ≅ (2𝜋𝑁)
1−𝑀
2 ∙ 𝑒𝑥𝑝 [−∑(

𝑥𝑖
2

2𝑁
+
ln 𝑝𝑖
2
)

𝒊∈𝑮

] = 𝑒𝑥𝑝 [𝜇(𝑁, (𝑝𝑖)) −∑
𝑥𝑖
2

2𝑁
𝒊∈𝑮

] (28) 

https://en.wikipedia.org/wiki/Energy
https://en.wikipedia.org/wiki/Isolated_system


Figure 6 shows graphs of ln 𝑃((𝑛𝑖); 𝑁, (𝑝𝑖)) as a function of 𝑛1 calculated for 𝑁 = 1000 and four 

sets of probabilities (𝑝𝑖), using exact formula (4), and multivariate normal approximation (28). 

In order to derive pseudo probability density in ℰ domain, I note that: 

• In thermodynamic limit, the number 𝐿(ℰ0; 𝑁,𝑀) of distinguishable states of statistical 

ensemble having ℇ ≤ ℰ0 is proportional to the volume of (𝑀 − 1) –dimensional sphere of 

radius √2𝑁ℰ0. This statement can be expressed as 

𝐿(ℰ0; 𝑁,𝑀) = lim
𝑁→∞

∑ 𝑔(ℇ;𝑁,𝑀)

{ℇ}≤ℰ0

= 𝑎(𝑁,𝑀) ∙ (2𝑁ℰ0)
𝑀−1
2  (29) 

The sum in (29) is over all distinct values of ℇ which are less or equal than ℇ0. The function 

𝑎(𝑁,𝑀) is determined from normalization requirement: 

1 =∑𝑃(ℇ;𝑁,𝑀)

{ℇ}

=∑𝑔(ℇ;𝑁,𝑀)

{ℇ}

∙ 𝑒𝑥𝑝(𝜇(𝑁,𝑀) − ℇ) (30) 

In order to convert from sums to integrals over continuous variable ℇ, I define pseudo density 

𝑔(ℇ;𝑁,𝑀) of distinguishable states of statistical ensemble as 

𝑔(ℰ;𝑁,𝑀) =
𝜕

𝜕ℰ
𝐿(ℰ;𝑁,𝑀) = 𝑎(𝑁,𝑀) ∙

𝑀 − 1

2
∙ (2𝑁)

𝑀−1
2 ∙ ℰ

𝑀−3
2  (31) 

The corresponding pseudo probability density 𝑃(ℰ;𝑁,𝑀) is given by (12). The normalization 

requirement for these functions becomes: 

1 = ∫ 𝑃(ℰ; 𝑁,𝑀)𝑑ℇ
ℇ𝑚𝑎𝑥

0

= ∫ 𝑔(ℇ;𝑁,𝑀) ∙ 𝑒𝑥𝑝(𝜇(𝑁,𝑀) − ℇ)𝑑ℇ
ℇ𝑚𝑎𝑥

0

 (32) 

The ℇ𝑚𝑎𝑥 value is obtained from (9) by having microstate 𝒋 with lowest probability 𝑝𝑚𝑖𝑛 =
min
𝒊∈𝑮
{𝑝𝑖} acquire maximum population: 𝑛𝑚𝑎𝑥 = 𝑁;  𝑛𝑖≠𝑗 = 0. From (9), as 𝑁 → ∞: 

ℇ𝑚𝑎𝑥((𝑛𝑖);  𝑁, (𝑝𝑖)) ≅ −𝑁 ∙ ln 𝑝𝑚𝑖𝑛 (33) 

For probabilities (5): 

ℇ𝑚𝑎𝑥((𝑛𝑖);  𝑁,𝑀) ≅ 𝑁 ∙ ln𝑀 (34) 

From (33) ℇ𝑚𝑎𝑥 → ∞ as 𝑁 → ∞. That allows replacing ℇ𝑚𝑎𝑥 in the upper limit of integral in (32) 

with ∞. I get [20] the expression for function 𝑎(𝑁,𝑀) in  

(29) as: 
𝑎(𝑁,𝑀) = [𝑒𝜇(𝑁,𝑀) ∙ (2𝑁)

𝑀−1
2 ∙ ∫ ℇ

𝑀−1
2 𝑒−ℇ𝑑ℇ

∞

0

]

−1

=
𝑒−𝜇(𝑁,𝑀)

(2𝑁)
𝑀−1
2 Γ (

𝑀 + 1
2 )

 (35) 

Using (35) and (17) allows rewriting (29) as 

𝐿(ℰ;𝑁,𝑀) =
ℇ
𝑀−1
2

Γ (
𝑀 + 1
2 )

𝑒−𝜇(𝑁,𝑀) =
(2𝜋𝑁ℰ)

𝑀−1
2

𝑀
𝑀
2 ∙ Γ (

𝑀 + 1
2 )

=
𝑉(√2𝑁ℰ;𝑀 − 1)

𝑀
𝑀
2

 (36) 

, where 𝑉(√2𝑁ℰ;𝑀 − 1) =
(2𝜋𝑁ℰ)

𝑀−1
2

Γ (
𝑀 + 1
2 )

 
is the volume of (𝑀 − 1) –dimensional 

sphere of radius √2𝑁ℰ. 

The number 𝑛(ℰ) of distinct values of ℰ in 𝑁 → ∞ limit can be estimated from (36) and (14) as 

𝑛(ℰ) =
𝐿(ℰ;𝑁,𝑀)

𝑀!
=

(2𝜋𝑁ℰ)
𝑀−1
2

𝑀
𝑀
2 ∙ Γ (

𝑀 + 1
2 ) Γ(𝑀 + 1)

 (37) 

https://en.wikipedia.org/wiki/Volume_of_an_n-ball
https://en.wikipedia.org/wiki/Volume_of_an_n-ball


From (37) one can approximately enumerate distinct energy levels ℰ𝑛 by “quantum number” 𝑛: 

ℰ𝑛 = [Γ (
𝑀 + 1

2
) Γ(𝑀 + 1)𝑒𝜇(𝑁,𝑀) ∙ 𝑛]

2
𝑀−1

=
𝑀

2𝜋𝑁
[Γ (

𝑀 + 1

2
) Γ(𝑀 + 1)𝑀

1
2 ∙ 𝑛]

2
𝑀−1

 (38) 

From (31) the pseudo density 𝑔(ℇ;𝑁,𝑀) of distinguishable states of statistical ensemble is 

𝑔(ℰ;𝑁,𝑀) =
𝜕

𝜕ℰ
𝐿(ℰ;𝑁,𝑀) =

ℇ
𝑀−3
2 𝑒−𝜇(𝑁,𝑀)

Γ (
𝑀 − 1
2 )

 (39) 

I use condition (13) to define effective ℰ𝑚𝑎𝑥
𝑒𝑓𝑓

 value: 

𝐿(𝑁,𝑀) = 𝐿(ℰ𝑚𝑎𝑥
𝑒𝑓𝑓
; 𝑁,𝑀) =

ℰ𝑚𝑎𝑥
𝑒𝑓𝑓

𝑀−1
2

Γ (
𝑀 + 1
2 )

𝑒−𝜇(𝑁,𝑀) =
(𝑁 +𝑀 − 1)!

𝑁! (𝑀 − 1)!
 (40) 

Figure 7 shows 𝐿(ℰ;𝑁, {𝑝𝑖}) calculated from exact expressions (4), (9), and from formula (36). 

From (11), (17), and (39), the pseudo probability density function of statistical ensemble in 

thermodynamic limit is 

𝑃(ℰ;𝑁,𝑀) =
ℇ
𝑀−3
2 𝑒−ℇ

Γ (
𝑀 − 1
2 )

= 𝛾𝑏,𝑐(ℇ);         𝑏 = 1;   𝑐 =
𝑀 − 1

2
 (41) 

, where 𝛾𝑏,𝑐(ℇ) is the probability density function of gamma [20] distribution with scale 

parameter 𝑏 = 1, and shape parameter 𝑐 = (𝑀 − 1) 2⁄ . I calculate moments of ℰ: 

Mean: 〈ℰ〉 =∑ℰ((𝑛𝑖);  𝑁,𝑀) ∙ 𝑃((𝑛𝑖);  𝑁,𝑀)
{𝑛𝑖}

 (42) 

Variance: 𝜎ℰ
2 =∑(ℰ((𝑛𝑖);𝑁,𝑀) − 〈ℰ〉)

2
∙ 𝑃((𝑛𝑖); 𝑁,𝑀)

{𝑛𝑖}

 (43) 

𝑟𝑡ℎ moment 

about mean: 
𝜅𝑟(𝑁,𝑀) =∑(ℰ((𝑛𝑖);  𝑁,𝑀) − 〈ℰ〉)

𝑟
∙ 𝑃((𝑛𝑖);  𝑁,𝑀)

{𝑛𝑖}

 (44) 

The sums in (42-44) are over all combinations of (𝑛𝑖) satisfying (1), i.e. over all partitions of N. 

Expression (41) allows explicit calculation of all moments of ℰ in thermodynamic limit. From (41) 

the mean value 〈ℰ〉, the variance 𝜎ℰ
2, and the third moment 𝜅3 are: 

〈ℰ〉 =
𝑀 − 1

2
 (45) 

𝜎ℰ
2 =

𝑀 − 1

2
 (46) 

𝜅3 = 𝑀 − 1 (47) 

Figure 8 shows calculations of mean value 〈ℰ〉, the variance 𝜎ℰ
2, and the third moment 𝜅3 from the 

exact expressions (42-44) for the moments, with (4) as probability mass function. It demonstrates 

how these values asymptotically approach thermodynamic limit values (45-47) as 𝑁 ∙ 𝑝𝑖 → ∞, i.e. 

as 𝑡 → ∞ where 𝑡 is the proper time (1). 

I shall demonstrate how the presented model correlates with some known constructs. Consider 

one-dimensional quantum harmonic oscillator. Its energy levels [21] are given by: 



ℰ𝑛 = (𝑛 +
1

2
) ∙ ℏ𝜔 (48) 

, where 𝜔 is the base frequency, and n = 0,1,2… . Energy levels (48) are equally-spaced. In my 

model, similar pattern is exhibited by energy levels of statistical ensemble of cardinality 𝑀 = 3, 

as shown on Figure 1. From (18) in thermodynamic limit approximation, the energy of statistical 

ensemble can be written as: 
 ℰ =∑

∆𝑖
2

2 ∙ 〈𝑛〉
𝑖∈𝑮

 (49) 

, where 
∆𝑖= 𝑛𝑖 − 〈𝑛〉 ; ∑∆𝑖= 0

𝑖

 ; 〈𝑛〉 =
𝑁

𝑀
 (50) 

From above, the energy levels of statistical ensemble of cardinality 𝑀 = 3 are: 

ℰ𝑘 =
𝐿𝑘
𝑁

 (51) 

, where 𝐿𝑘 are Loeschian numbers [22]. With (48) and (51), I can write the comparison table of 

the first few energy levels of quantum harmonic oscillator in units of ℏ𝜔/2, and of statistical 

ensemble of cardinality 𝑀 = 3 in units 1 𝑁⁄ : 

quantum harmonic 

oscillator 
 1 3  5 7 9 11  13 15  17 19 21 23 25 27  29 31 33 35  37 39 41 43 

statistical ensemble 

of cardinality 𝑀 = 3 
0 1 3 4  7 9  12 13  16  19 21  25 27 28  31   36 37 39  43 

, where black boxes designate missing energy levels. In the second row, the energy levels shown 

in shaded boxes are only realized for modes with 𝑚𝑜𝑑(𝑁, 3) > 0; and energy levels shown in 

white boxes are realized for modes with 𝑚𝑜𝑑(𝑁, 3) = 0. Here 𝑚𝑜𝑑(𝑁, 3) is the remainder of 

division of 𝑁 by 3. 

Consider another classic quantum mechanical example: particle of mass 𝑚 in a box of size 𝐿. 

Its energy levels [21] are given by: 
ℰ𝑛 =

ℎ2

8𝑚𝐿2
𝑛2 ; 𝑛 = 1,2,3… (52) 

In my model, similar energy spectrum is exhibited by statistical ensemble of cardinality 𝑀 = 2, 

as shown on Figure 2. From (49), the energy levels of statistical ensemble of cardinality 𝑀 = 2, 

in thermodynamic limit approximation, are: 
ℰ𝑛 =

𝑛2

2𝑁
=

ℎ2

8𝑚𝐿2
𝑛2 ; 𝑛 = 0,1,2… (53) 

, where 𝑚 = 𝑁 ∙ (
ℎ

2𝐿
)
2

 is to be considered as the effective mass of the particle. (54) 

Energy levels (53) with even 𝑛 are only possible when 𝑁 is even, and energy levels with odd 𝑛 are 

only possible when 𝑁 is odd. With ½ probability the lowest energy level is ℰ = ℰ0 = 0, and with 

½ probability it is ℰ = ℰ1 = 1, in units of  ℎ2 (8𝑚𝐿2)⁄ . 

 

3. THERMODYNAMIC ENSEMBLE 

The statistical ensemble considered in previous section represents a single copy of 

underlying system, with mode 𝒌 = (𝑛𝒊∈𝑮) uniquely identifying the state. In this section, I consider 

observation as a random pick of underlying system from a collection of systems, each represented 

by its own statistical ensemble of cardinality 𝑀. I call such collection of systems thermodynamic 

ensemble. I designate  {𝒌}  the set of modes a system may occupy;  𝐾 the total number of systems,  



and 𝐾𝑘 the number of systems in mode 𝒌: ∑𝐾𝑘
{𝑘}

= 𝐾 (55) 

I designate 𝑒𝑥𝑝(𝜌(𝑁)) the probability for a system to be in any mode with total population of 

microstates 𝑁. Then, from (11), the probability for a system to be in a mode 𝒌 is: 

 𝑝𝑘 = 𝑒𝑥𝑝(𝜌(𝑁) + 𝜇(𝑁) − ℰ(𝒌)) = 𝑒𝑥𝑝(𝜌𝑁 + 𝜇𝑁 − ℰ𝒌) (56) 

I consider systems in the same mode 𝒌 indistinguishable to the observer. Then the probability mass 

function of distribution of modes among systems is 

𝑃((𝐾𝑘);  𝐾, (𝑝𝑘)) = 𝐾!∏
𝑝𝑘
𝐾𝑘

𝐾𝑘!
{𝑘}

 (57) 

The objective is to find the most probable distribution (𝐾𝑘). For standalone systems, the most 

probable distribution is the one which maximizes (57), i.e. 

 𝐾𝑘 = 𝐾 ∙ 𝑝𝑘 (58) 

Let’s consider systems to be part of some bigger system in a certain state.  That imposes conditions 

on distribution of modes among systems, so relations (45-47), (58) may no longer hold. I consider 

one of the possible conditions and show how it leads to the notion of temperature. Let the state of 

the bigger system be such that the average energy of the systems in thermodynamic ensemble is 
〈ℰ〉, which may be different from the average energy of a standalone systems given by (45). Then: 

〈ℰ〉 ∙ 𝐾 =∑𝐾𝑘 ∙ ℰ𝒌
{𝑘}

 (59) 

To find the most probable distribution of modes (𝐾𝑘), I shall maximize logarithm of (57) using 

method of Lagrange multipliers [23, 24] with conditions (55) and (59): 

ln 𝑃((𝐾𝑘);  𝐾, (𝑝𝑘)) = ln Γ(𝐾 + 1) +∑[𝐾𝑘 ∙ ln 𝑝𝑘 − ln Γ(𝐾𝑘 + 1)]

{𝑘}

= ln Γ(𝐾 + 1) +∑[𝐾𝑘 ∙ (𝜌𝑁 + 𝜇𝑁 − ℰ𝒌) − ln Γ(𝐾𝑘 + 1)]

{𝑘}

 
(60) 

From (60), (59), (55) I obtain the following equation involving Lagrange multipliers 𝛼 and 𝛽: 

Ψ0(𝐾𝑘 + 1) = 𝜌𝑁 + 𝜇𝑁 − (1 + 𝛼) ∙ ℰ𝒌 − 𝛽 (61) 

, where Ψ0 is digamma function, and 𝛼 and 𝛽 are to be determined by solving (61) for 𝐾𝑘: 

𝐾𝑘 = Ψ0
−1 (𝜌𝑁 + 𝜇𝑁 −

ℰ𝒌
𝑇
− 𝛽) − 1 (62) 

, and by plugging 𝐾𝑘 from (62) into (59) and (55). In (62), Ψ0
−1 is the inverse digamma function, 

and 1 𝑇⁄ = 1 + 𝛼. The parameter 𝑇 is commonly known as temperature. 

Since the number of systems 𝐾𝑘 in mode 𝒌 cannot be negative, expression (62) effectively 

limits modes which can be present in most probable distribution to those satisfying 

 
𝜌𝑁 + 𝜇𝑁 −

ℰ𝒌
𝑇
− 𝛽 + 𝛾 ≥ 0 (63) 

, where 𝛾 ≅ 0.577215665 is Euler–Mascheroni constant. Using approximation [25]: 

𝑒𝑥𝑝(Ψ0(𝐾𝑘 + 1)) ≅ 𝐾𝑘 + 1 2⁄ ,  I rewrite (62) as: 



 
𝐾𝑘 ≅ 𝑒𝑥𝑝 (𝜌𝑁 + 𝜇𝑁 −

ℰ𝒌
𝑇
− 𝛽) −

1

2
 (64) 

Presence of −½ term in (64) leads to a computationally horrendous task of calculating 𝛽 and 𝑇, 

because the summation in (55) and (59) has to be only performed for modes satisfying (63). I shall 

leave the exact computation to a separate exercise, and make a shortcut, by ignoring −½ term in 

(64). This approximation is equivalent to Boltzmann’s postulate2 [26] that the number of systems 

in mode 𝒌 is proportional to 𝑒𝑥𝑝(−ℰ𝑘 𝑇⁄ ). The shortcut allows calculation of Lagrange multiplier 

𝛽 from (55): 

𝑒𝑥𝑝(−𝛽) =
𝐾

𝑍(𝑇)
 , where 𝑍(𝑇) =∑𝑒𝑥𝑝 (𝜌𝑁 + 𝜇𝑁 −

ℰ𝑘
𝑇
)

{𝑘}

 (65) 

Using expression (39), the partition function 𝑍(𝑇) in (65) can be evaluated as: 

𝑍(𝑇) = ∑ 𝑒𝑥𝑝(𝜌𝑁)

∞

𝑁=1

∑𝑒𝑥𝑝 (𝜇𝑁 −
ℰ𝑘
𝑇
)

{𝑘}𝑁

= ∑ 𝑒𝑥𝑝(𝜌𝑁)

∞

𝑁=1

∫ 𝑔(ℰ;𝑁,𝑀)
∞

0

𝑒𝑥𝑝 (𝜇𝑁 −
ℰ

𝑇
)𝑑ℰ

= ∑ 𝑒𝑥𝑝(𝜌𝑁)

∞

𝑁=1

∫
ℰ
𝑀−3
2

Γ (
𝑀 − 1
2 )

∞

0

𝑒𝑥𝑝 (−
ℰ

𝑇
)𝑑ℰ = 𝑇

𝑀−1
2 ∑𝑒𝑥𝑝(𝜌𝑁)

∞

𝑁=1

= 𝑇
𝑀−1
2  

(66) 

The equation (59) then becomes 〈ℰ〉 = 𝑇2 ∙
𝜕

𝑇
ln 𝑍 =

𝑀 − 1

2
∙ 𝑇 (67) 

Eq. (67) is the familiar relation [24] between average per-particle energy and temperature in 
(𝑀 − 1)-dimensional ideal Maxwell-Boltzmann gas. Thermodynamic entropy 𝑆𝑻 can be evaluated  

as: 
𝑆𝑻 = −∑𝑃𝑘(𝑇) ∙ ln 𝑃𝑘

{𝑘}

(𝑇) =
𝑀 − 1

2
ln(𝑒𝑇) −∑(𝜌𝑁+𝜇𝑁) ∙ 𝑃𝑘(𝑇)

{k}

 

=
𝑀 − 1

2
ln(𝑒𝑇) − ∑(𝜌𝑁+𝜇𝑁)𝑒𝑥𝑝(𝜌𝑁)∑

𝑒𝑥𝑝 (𝜇𝑁 −
ℰ𝑘
𝑇 )

𝑍(𝑇)
{k}𝑁

∞

𝑁=1

 

=
𝑀 − 1

2
ln(𝑒𝑇) − ∑(𝜌𝑁+𝜇𝑁) ∙ 𝑒𝑥𝑝(𝜌𝑁)

∞

𝑁=1

 

(68) 

, where 

𝑃𝑘(𝑇) =
𝐾𝑘
𝐾
=  
𝑒𝑥𝑝 (𝜌𝑁+𝜇𝑁 −

ℰ𝑘
𝑇 )

𝑍(𝑇)
 (69) 

With expression (17) for 𝜇𝑁, in thermodynamic limit, I rewrite (68) as 

𝑆𝑻 =
𝑀 − 1

2
ln(2𝜋𝑒𝑇) −

𝑀

2
ln𝑀 + 𝑆𝑵 +

𝑀 − 1

2
∑𝑒𝑥𝑝(𝜌𝑁) ln𝑁

𝑁

 (70) 

, where 𝑆𝑁 = −∑𝜌𝑁 ∙ 𝑒𝑥𝑝(𝜌𝑁)

𝑁

 (71) 

                                                 
2 While widely used, this postulate has rather unphysical consequence that there is a non-zero probability of finding a 

system in a mode with arbitrary large energy. Another consequence is the divergence of partition function for some 

constructs, e.g. hydrogen electronic levels [60]. 



To calculate 𝑆𝑁 I have to make an assumption on 𝑒𝑥𝑝(𝜌𝑁) distribution. As a possible example, I 

shall assume the number 𝑁 = ∑ 𝑛𝑖 𝑖∈𝑮  of microstates for a system in thermodynamic ensemble is 

Poisson-distributed around mean 〈𝑁〉 ≫ 1 value. Therefore, for 𝑆𝑁, I can use expression for the  

entropy of Poisson distribution [27]: 
𝑆𝑁 ≅

1

2
ln(2𝜋𝑒 ∙ 〈𝑁〉) (72) 

I also use the following: ∑𝑒𝑥𝑝(𝜌𝑁) ln𝑁

𝑁

= 〈ln𝑁〉 ≅ ln〈𝑁〉 (73) 

With (72), (73) I finally obtain: 
𝑆𝑻 =

𝑀

2
ln (2𝜋𝑒

〈𝑁〉

𝑀
) +

𝑀 − 1

2
ln 𝑇 (74) 

In case of 𝑀 = 4, i.e. for (𝑀 − 1) = 3 degrees of freedom, the expression (74) turns into 

equivalent of Sackur-Tetrode equation [28] for entropy of ideal gas. For thermodynamic entropy 

of a standalone system, instead of (68-74) from (17) and (45) I have: 

𝑆 = −∑𝑃𝑘 ∙ ln 𝑃𝑘
{𝑘}

= −∑𝑒𝑥𝑝(𝜇𝑁 − ℰ𝑘) ∙ (𝜇𝑁 − ℰ𝑘)

{𝑘}

= 〈ℰ〉 − 𝜇𝑁

=
𝑀 − 1

2
−
𝑀

2
ln𝑀 +

𝑀 − 1

2
ln 2𝜋𝑁 =

𝑀

2
ln (2𝜋𝑒

𝑁

𝑀
) −

1

2
ln 2𝜋𝑒𝑁 

(75) 

Thermodynamic entropy (74) per system in thermodynamic ensemble is larger than entropy (75) 

of a standalone system by term (72) plus the temperature-related term. The increase in entropy by 

𝑆𝑁 happens because of the spread in values of 𝑁, i.e. in age of the systems. The increase in entropy 

by temperature-related term 
𝑀−1

2
ln 𝑇 is due to the spread in energies of the systems. The non-zero 

thermodynamic entropy of a standalone system implies its state is unknown prior to observation, 

for each observation. Using (1) I rewrite (75) in terms of proper time 𝑡 as: 

𝑆(𝑡;𝑀) = 𝑆0(𝑀) +
𝑀 − 1

2
𝑡 , where 𝑆0(𝑀) =

𝑀 − 1

2
ln 2𝜋𝑒 −

𝑀

2
ln𝑀 (76) 

The expression for 𝑆0(𝑀) in (76) was derived in thermodynamic limit, i.e. when 𝑁 → ∞. When 

𝑁 = 1 (i.e. when 𝑡 = 0)  𝑆 = ln𝑀. By comparing 𝑆0(𝑀) to ln𝑀 (Figure 9) I see that 𝑆0(𝑀) fairly 

close to ln𝑀 except when 𝑀 is large enough, in which case thermodynamic limit approximation 

for the given 𝑁 becomes less valid anyhow. Therefore, I can replace 𝑆0(𝑀) with ln𝑀 in (76) and 

obtain thermodynamic entropy of a standalone system as: 

𝑆(𝑡;𝑀) = ln𝑀 +
𝑀 − 1

2
𝑡 (77) 

The [linear] relation between thermodynamic entropy and proper time (77) is the manifestation 

of the Second Law of Thermodynamics (SLT). Previously, SLT has been demonstrated in the 

context of time model [13] using numeric calculation of microstate entropy. 

The expression for 𝑍(𝑇) in (66) has been derived in thermodynamic limit approximation, i.e. 

when 𝑁 → ∞. It means there must be large number of energy levels included in sum (65), i.e. 

temperature 𝑇 cannot be too small. Therefore, the expressions (66-67) are only valid for 𝑇 ≫ ∆ℰ, 

where ∆ℰ is the characteristic difference between adjacent energy levels. 

For statistical ensemble of cardinality 𝑀 = 3 the approximately evenly-spaced energy levels 

(Figure 1) allow for more accurate expression for partition function. From (38) the characteristic 

difference between energy levels in the limit 𝑁 → ∞ is: 



∆ℇ =
𝑀!

𝑔(ℰ;𝑁,𝑀)
= 6 ∙ 𝑒𝑥𝑝(𝜇𝑁) =

18√3

2𝜋𝑁
≅
5

𝑁
 (78) 

Figure 10 shows numeric calculation of the difference ∆ℇ between adjacent energy levels 

averaged over distinct states of statistical ensemble with the given value of 𝑁, and 𝑀 = 3. 

If 𝑚𝑜𝑑(𝑁, 3) = 0, the first 17 energy levels in units of (ℏ𝜔 2⁄ = 1 𝑁⁄ ) and their degeneracy: 

𝑘 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

ℰ𝑘 0 3 9 12 21 21 27 36 39 39 48 57 57 63 63 75 81 

𝑔𝑘 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 

If 𝑚𝑜𝑑(𝑁, 3) > 0, the first 16 energy levels and their degeneracy: 

𝑘 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

ℰ𝑘 1 4 7 13 16 19 25 28 31 37 43 49 52 61 64 67 

𝑔𝑘 3 3 6 6 3 6 3 6 6 6 6 9 6 6 3 6 

The combined energy levels are thus given by (51). I can use (48) as approximation for the 

combined energy levels (51) in expression for partition function (65) with degeneracy of each level 

𝑔 = 𝑀!=6, and obtain the mean energy of modes for subsystems with given 𝑁 as [29]: 

 
〈ℰ〉𝜔 = 

ℏ𝜔

2
+

ℏ𝜔

exp (
ℏ𝜔
𝑇 ) − 1

 ; ℏ𝜔= 2 𝑁⁄  (79) 

The relation 〈ℰ〉𝜔 ℏ𝜔⁄  is commonly referred to as the average number of photons in a mode [30]. 

In my model, the notion of a photon is meaningless. The quantized energy levels (9,48,51) make 

transitions between modes appear as absorption or emission of particles. 

Formula (79) has been obtained using linear dependence (48) of energy levels ℰ𝑛 on quantum 

number 𝑛, in 𝑁 ≫ 1, i.e. ℏ𝜔 ≪ 1 limit. Figure 1 shows approximation (48) holds reasonably well 

when 𝑛 is not too large. From (14), the linearity (48) break down for 𝑛 ≥ 𝑁2 24⁄ . Therefore, the 

typical black-body spectrum can only be exhibited by relatively low-temperature systems, with 
(ℏ𝜔~𝑇) ≪ 1. A good example is the cosmic microwave background. The higher the temperature, 

the more will the spectrum differ from that of black body, especially in ℏ𝜔 > 𝑇 region, where 

spectral intensity would fall off steeper than black-body radiation as ℏ𝜔 → ∞. Such deviation from 

black-body radiation is already obvious in solar spectrum. 

Zero-point energy term ℏ𝜔 2⁄  in (79) is the subject of a hundred-year controversy [31, 32]. It 

leads to the infinite energy density of the field in any volume of space, as there is no upper limit 

on 𝜔 in conventional theory. In presented model, contrary to the conventional theory, ℏ𝜔 term 

cannot contribute more than (1 𝑁⁄ ) ≤ 1 to the average energy (79), i.e. its contribution is within 

standard deviation (46). The problem of infinite zero-point energy [31] does not exist within the 

context of the model. 

 

4. THE DYNAMICS OF KNOWLEDGE VECTOR 

In this section, I discuss dynamics of knowledge vector in the context of time model (1). A 

knowledge vector is defined in an observation basis associated with the measuring device. A 

special interest presents knowledge vector 𝒛 as 𝑆𝑂(𝑀 − 1) projection 𝚯 of canonical vector 𝒙 (22) 

 𝒛 = 𝚯𝑻 ∙ 𝒙 (80) 

https://en.wikipedia.org/wiki/Black-body_radiation
https://en.wikipedia.org/wiki/Cosmic_microwave_background
https://en.wikipedia.org/wiki/Sunlight#/media/File:Solar_spectrum_en.svg
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Transformation (80) preserves quadratic form (24) which means the components {𝑧𝑖} have 

familiar from classical mechanics relation to energy. The orthogonal transformation 𝚯 in (80) 

represents the measuring device. The state of measuring device has to reflect the state of underlying 

system. Therefore, transformation 𝚯(𝑡, 𝒙) depends on 𝒙, and, possibly, proper time 𝑡. Any 

𝑆𝑂(𝑀 − 1) matrix 𝚯 can be expressed [33] as matrix exp() of real skew-symmetric matrix 𝑨: 

 
𝚯 = 𝑒𝑥𝑝(𝑨) , where 𝐴𝑖𝑗 = −𝐴𝑗𝑖 (81) 

Any real skew-symmetric matrix 𝑨 can be reduced [33, 34] to a block-diagonal form 𝑫 by 

𝑆𝑂(𝑀 − 1) transformation: 𝑨 = 𝑶 ∙ 𝑫 ∙ 𝑶𝑻 (82) 

, where 𝑫 =

(

 
 
 

0 0 0
0 0 𝜑1
0 −𝜑1 0

⋯ 0

⋮ ⋱ ⋮

0 ⋯
0 𝜑𝑛
−𝜑𝑛 0 )

 
 
 

 , and 𝜑𝑘 = 𝜑𝑘(𝑡, 𝒙) are real (83) 

Plugging (82) into (81) I obtain from (80): 

𝒛 = 𝑶 ∙ 𝑒𝑥𝑝(𝑫𝑻) ∙ 𝑶𝑻 ∙ 𝒙 (84) 

, where 

𝑒𝑥𝑝(𝑫𝑻) =

(

 
 
 

1 0 0
0 𝑐𝑜𝑠(𝜑1) −𝑠𝑖𝑛(𝜑1)

0 𝑠𝑖𝑛(𝜑1) 𝑐𝑜𝑠(𝜑1)
⋯ 0

⋮ ⋱ ⋮

0 ⋯
𝑐𝑜𝑠(𝜑𝑛) −𝑠𝑖𝑛(𝜑𝑛)

𝑠𝑖𝑛(𝜑𝑛) 𝑐𝑜𝑠(𝜑𝑛) )

 
 
 

 (85) 

I re-write (84) as 
𝒚 = 𝑶𝑻 ∙ 𝒛 = 𝑒𝑥𝑝(𝑫𝑻) ∙ 𝑶𝑻 ∙ 𝒙 = 𝑒𝑥𝑝(𝑫𝑻) ∙ 𝒖  (86) 

, where I introduced new knowledge vector 𝒚 = 𝑶𝑻 ∙ 𝒛,  and new state vector 𝒖 = 𝑶𝑻 ∙ 𝒙. Vector 

𝒖 is the state vector represented in eigenbasis of the measuring device. Action of 𝑒𝑥𝑝(𝑫𝑻) operator 

on vector 𝒖 in (86) constitutes transformation by the measuring device. I define eigenspaces of the 

measuring device as 2D subspaces formed by pairs of eigenvectors corresponding to eigenvalues  

±𝜑𝑘 in (83). In eigenbasis, the action of the measuring device is reduced to rotations in 2D 

orthogonal eigenspaces, as evident from (85).  

As I mentioned earlier, the rank of matrices 𝑫, 𝑶 and of vectors 𝒙, 𝒛, 𝒚, 𝒖 is 𝑀 − 1. Therefore, 

transformation (86) takes especially simple form in case of 𝑀 = 3: 

𝒚 = (
𝑦1
𝑦2
) = (

𝑐𝑜𝑠(𝜑) −𝑠𝑖𝑛(𝜑)

𝑠𝑖𝑛(𝜑) 𝑐𝑜𝑠(𝜑)
) ∙ 𝒖 , where 𝜑 = 𝜑(𝑡, 𝒖)  , and 𝒖 = (

𝑢1
𝑢2
) (87) 

When 𝑀 = {1, 2} the transformation is trivial: if 𝑀 = 1 then 𝒚 ≡ 0; if 𝑀 = 2 then 𝒚 = 1 ∙ 𝒖. 

Transformation (87) can be expressed in complex notation using real components 𝑢1, 𝑢2,𝑦1, 𝑦2: 

𝒚 = (𝑒
𝑖𝜑 0
0 𝑒−𝑖𝜑

) ∙ 𝒖 , where 𝒖 =
1

√2
∙ (
𝑢1 + 𝑖𝑢2
𝑢1 − 𝑖𝑢2

) , and  𝒚 =
1

√2
∙ (
𝑦1 + 𝑖𝑦2
𝑦1 − 𝑖𝑦2

) (88) 

In case of 𝑀 > 3 one can convert to complex notation by combining pairs of real {𝑢𝑘}, {𝑦𝑘} 
components corresponding to 2D eigenspaces in (85) into complex numbers as in (88). In case of 

even 𝑀 there will be one real-only component 𝑢𝑖 left un-transformed. In complex notation, (85) 

can be written as a Lie group 𝑆𝑈(𝑀 − 1) unitary matrix 𝑼: 



for even 𝑀: 𝑼 =

(

  
 

1   
 𝒆−𝑖𝜑1  
  𝒆𝑖𝜑1

⋯ 0

⋮ ⋱ ⋮

0 ⋯ 𝒆−𝑖𝜑𝑛  
 𝒆𝑖𝜑𝑛)

  
 

 , where 𝜑𝑘 = 𝜑𝑘(𝑡, 𝒖) (89) 

, and for odd 𝑀: 𝑼 =

(

 
 

𝒆−𝑖𝜑1  
 𝒆𝑖𝜑1

⋯ 0

⋮ ⋱ ⋮

0 ⋯ 𝒆−𝑖𝜑𝑛  
 𝒆𝑖𝜑𝑛)

 
 

  (90) 

Transformation (86) can now be expressed in complex notation as: 

 𝒚 = 𝑼† ∙ 𝒖  (91) 

In complex notation, 𝑆𝑂(𝑀 − 1) matrix (85) takes diagonal form and becomes 𝑆𝑈(𝑀 − 1) 
matrix (89-90). Operating with unitary matrices in diagonal form is easier than with orthogonal 

matrix (85). The complex notation is a technique to make some math easier to handle, not to create 

new physics out of thin air. 

Consider scenario where eigenspaces of the measuring device do not depend on time or on the 

state vector of underlying system, i.e. 𝜕𝑶 𝜕𝑡⁄ = 0 in (86). That deems a valid expectation if 

measuring device is to provide consistent results. It means, e.g., the orientation of polarizer does 

not depend on time, or on the polarization of incident light. Then, from (27), 〈𝜕𝒖 𝜕𝑡⁄ 〉 = 0.  

Assuming analytic 𝜑𝑘(𝑡, 𝒖): 
〈
𝜕𝒚

𝜕𝑡
〉 = 〈

𝜕

𝜕𝑡
(𝑼†𝒖)〉 = 𝑖 ∙ 𝜱† ∙ 𝒚 (92) 

, where, for even 𝑀: 

𝜱 =

(

 
 
 

0   
 𝜃1  
  −𝜃1

⋯ 0

⋮ ⋱ ⋮

0 ⋯
𝜃𝑛  
 −𝜃𝑛)

 
 
 

 (93) 

, and for odd 𝑀: 

𝜱 =

(

 
 

𝜃1  
 −𝜃1

⋯ 0

⋮ ⋱ ⋮

0 ⋯
𝜃𝑛  
 −𝜃𝑛)

 
 

 (94) 

, where 𝜃𝑘 =
𝜕𝜑𝑘(𝑡, 𝒖)

𝜕𝑡
  (95) 

If eigenspace component 𝒖𝑘 = 0, the underlying system is in a state characterized by the 

symmetry with respect to rotations within 𝑘𝑡ℎ 2D eigenspace of the measuring device. Therefore, 

the eigenspace component 𝒚𝑘 will not rotate if 𝒖𝑘 = 0, i.e. null vector has no phase. Thus, 

𝜃𝑘(𝒖𝑘 = 0) = 0. In the vicinity of 𝒖𝑘 = 0,  𝜃𝑘(𝒖) is approximated by a positive quadratic form 

on 𝒖𝑘. The only such form is the eigenspace component of energy: 

𝜃𝑘 =
ℰ𝑘
ℏ

 , where ℰ𝑘 =
⟨𝑢𝑘|𝑢𝑘⟩

2𝑁
=
⟨𝑦𝑘|𝑦𝑘⟩

2𝑁
 , and ∑ℰ𝑘

𝑘

= ℰ (96) 



, and ℏ is a constant of proportionality which I’m tempted to call Planck’s constant. No model is 

complete if it contains underived physical constants. To obtain an expression for ℏ, I note that in 

a case of 𝑁 = 1 and 𝑀 = 3, there are 3 canonical vectors possible, from (22): 

 
(
−1 √2⁄

√3 2⁄
) , (

−1 √2⁄

−√3 2⁄
) , (√2

0
)  (97) 

The phase difference between these vectors is 2𝜋 3⁄ . Thus, for underlying system with 𝑁 = 1 and 

𝑀 = 3, the proper time (1) increment 𝜏 = ∆(ln𝑁) = 1/𝑁 corresponds to a phase increment ∆𝜑 =
2𝜋 3⁄ . The energy (9) of underlying system with 𝑁 = 1 and 𝑀 = 3 is ℰ =  −3 ∙ ln Γ(4 3⁄ ) ≅ 1 3⁄ . 

Thus, in proper time scale of the system with 𝑁 = 1, the value of the Planck’s constant is: 

ℏ =
ℰ ∙ 𝜏

∆𝜑
≅
1

2𝜋
 ; ℎ = 2𝜋ℏ = 1 (98) 

A classical measuring device, such as the wall clock, is coupled into environment via various 

interactions, electromagnetic, gravitational, etc. Effectively, it is part of the whole universe. Its 

proper time is the universe’ proper time, defined by the total population number (1) of microstates 

in statistical ensemble representing the universe. In universe’ proper time scale (98) becomes: 

ℏ ≅
1

2𝜋𝑁
 ; ℎ = 2𝜋ℏ = 1 𝑁⁄  (99) 

From (99) it follows, the Planck’s constant ought to decrease with time 𝑡 = ln𝑁.  Although, given 

the number 𝑁 is likely to be very large, the decrease ∆ℏ ℏ⁄ = −∆𝑁 𝑁⁄  might not be detectable. 

Since the time increments 𝜏 = 1 𝑁⁄  also decrease, the product ∆𝜑 = ℰ ∙ 𝜏 ℏ⁄  stays the same. The 

decrease in the value of ℏ is negated by the slowing time. It is not clear if such decrease can be 

detected at all given all measurements of Planck’s constant [35], in effect, are measurements of 

the product ℏ𝜔 or ∆ℰ ∙ 𝜏 ℏ⁄ . The dimensionless value (99) of Planck’s constant does not expound 

the observable timescales, which are to be determined from empirical evidence. 

Unlike (91), the equation (92) with (93-95) only contains reference to knowledge vector 𝒚, and 

no reference to the state vector 𝒖 of underlying system. The linearity of (92) means the expected 

past and the future of knowledge vector are unambiguously defined in the present. The expectation 

that the current state contains information about the past gives rise to the concept of memory. The 

past or the future are the knowledge vectors defined in the present and related by transformation: 

 𝑼 = 𝑒𝑥𝑝(−𝑖𝜱 ∙ (𝑡 − 𝑡0)) (100) 

The measurement device performing transformation (100) maintains phase relationship 

(coherence) between knowledge vectors. I call it a quantum device. 

Equation (92) is similar to Schrödinger equation where H-matrix = −ℏ𝜱, and where 𝜃𝑖 are 

the characteristic frequencies. The notable difference is that (92) incorporates measurement 

apparatus, as it describes the expected evolution of knowledge vector as rotations within 2D 

eigenspaces of the measuring device. The Schrödinger equation describes evolution of wave 

function as if it exists as some sort of physical reality outside of measurement apparatus. 

Schrödinger himself believed wave function is a physical reality, a density wave [36]. It is rather 

common in physics community [37], and others (see e.g. Tangled up in Entanglement by L.M. 

Krauss and response by D. Chopra) to assume the evolution of wave function according to 

Schrödinger equation is independent of the observer, i.e. independent of representation. 

The expectation of the equivalence of different representations is born out of assumption of 

realism, i.e. of observed system existing and possessing properties independent of observer. If 

different representations are not equivalent, physicists are confronted with the choice of preferred 

basis [14]. The assumption of realism led to a number of theories alternative to Copenhagen 

http://www.newyorker.com/tech/elements/tangled-up-in-entanglement-quantum-mechanics
http://www.newyorker.com/contributors/lawrence-krauss
http://www.newyorker.com/contributors/lawrence-krauss
https://www.deepakchopra.com/blog/article/5438


Interpretation, such as many worlds [38] and pilot wave [39]. The Copenhagen Interpretation 

maintains underlying system does not have definite properties prior to being measured. In different 

representations, objects may demonstrate contradictory behavior, as in interference experiments 

[15] where objects behave either as waves, or as classical particles depending on configuration of 

measuring apparatus. If device maintains phase relationship between knowledge vectors, the 

observed object exhibits wave-like behavior. Without phase relationship between knowledge 

vectors, classical behavior is observed, as I show below. The corresponding experimental setups 

provide examples of [unitarily] non-equivalent representations. It is trivial to prove there could be 

no unitary transformation from quantum to a classical behavior. Consider a system in a pure 

quantum state. Its density matrix 𝝆 satisfies 𝝆2 = 𝝆. If unitary transformation 𝑼, such as time 

propagator 𝑼 = 𝑒𝑥𝑝(𝑖𝑯 ∙ 𝑡 ℏ⁄ ), is applied to 𝝆, then density matrix 𝒒 in the new basis is 𝒒 =
𝑼𝝆𝑼†. It is easy to see that 𝒒2 = 𝒒, i.e. the system remains in a pure quantum state. It will also be 

true in case of time-dependent 𝑯(𝑡), i.e. no [coherent] coupling of external fields can force a pure 

quantum system to transform into a classical, or a mixed state. The existence of non-equivalent 

representations has been proven by Haag [40] but its significance is still not fully appreciated. 

The measurement result is [usually] a finite scalar value. It’s natural to assume it is an analytic 

scalar function 𝐽(𝒚) of knowledge vector 𝒚 with minimum at 𝐽(𝒚 = 0)=0. Due to above-

mentioned symmetry of 𝒖𝑘 = 0 state, in the vicinity of  𝒚 = 0,  𝐽(𝒚) is approximated by a positive 

semi-definite quadratic form on 𝒚, diagonal in device eigenbasis: 

 
𝐽(𝒚) =

⟨𝒚|𝑭|𝒚⟩

2𝑁
=∑𝑓𝑘 ∙ ℰ𝑘

𝑘

 (101) 

, where index 𝑘 spans eigenspaces of the measuring device; 𝑭 is the operator matrix of observable; 

𝑓𝑘 are eigenvalues of 𝑭; ℰ𝑘 are eigenspace components of energy (96); 𝑓𝑘 are device calibration 

constants. For any observable, there exists a device eigenbasis in which the operator matrix 𝑭 of 

the observable is diagonal. In real number notation, matrix 𝑭 must be positive semi-definite in 

order for the observed values 𝑓𝑘 to be real non-negative numbers. In complex notation (91), the 

eigenvalues of 𝑭 come in complex-conjugate pairs. In this case 𝑓𝑘 in (101) is the real part of the 

eigenvalue. In canonical basis (22), the device is defined by a symmetric matrix 𝑭′ = 𝑶𝑭𝑶𝑻, 

where matrix 𝑶 defines eigenspaces, as in (85), and diagonal matrix 𝑭 defines eigenvalues. 

The quadratic form approximation is invalid under higher energies. However, the rightmost 

side of (101) is expressed in terms of energy eigenspace components, not as a quadratic form on 

knowledge vector. It is conceivable the rightmost side of (101) is not an approximation. It may be 

valid for the whole range of energy values, including region of higher energies, where linear 

dependence of ℰ on quantum number breaks down (Figure 1). 

If operator matrix of observable 𝑨 is diagonal in eigenbasis of device 𝑼1, and operator matrix 

of observable 𝑩 is diagonal in eigenbasis of device 𝑼2, and if devices 𝑼1 and 𝑼2 have different 

eigenspaces, then matrices 𝑨 and 𝑩 do not commute. Hence, the generalized uncertainty principle 

[21] applies if observables 𝑨 and 𝑩 are measured in eigenbasis 𝒚 of some third device 𝑼3: 

 
𝜎𝑨
2 ∙ 𝜎𝑩

2 ≥
1

4
|⟨𝒚|𝑨𝑩 − 𝑩𝑨|𝒚⟩|2 (102) 

The canonical state vector 𝒙 can be expressed as a sum (26) of canonical state vectors. Similar 

decomposition 𝒚 = ∑𝒚𝑖 of the knowledge vector can be used for input to quadratic form (101): 

𝐽(𝒚) = ∑
⟨𝒂|𝑭|𝒃⟩

2𝑁
𝒂,𝒃∈{𝒚𝑖}

=∑𝑓𝑘 ∙ ∑ 𝑟𝒂𝑘 ∙ 𝑟𝒃𝑘 ∙ cos(𝜑𝒂𝑘 − 𝜑𝒃𝑘)

𝒂,𝒃∈{𝒚𝑖}𝑘

 (103) 

https://en.wikipedia.org/wiki/Copenhagen_interpretation


, where 𝜑𝒂𝑘;  𝜑𝒃𝑘 are 𝑘𝑡ℎ eigenspace phases (89) of vectors 𝒂, 𝒃 ∈ {𝒚𝑖}; 𝑟𝒂𝑘 = [𝑁𝑎ℰ𝒂𝑘 𝑁⁄ ]
1 2⁄

; 

ℰ𝒂𝑘 = ⟨𝒂𝑘|𝒂𝑘⟩ (2𝑁𝑎)⁄ . The decomposition 𝒚 = ∑𝒚𝑖 is selected from possible decompositions of 

𝒚 by the measuring device, through entanglement with underlying system. Device acts as a filter, 

only entangling with modes {𝒖𝒊} which match device modes. In device eigenbasis, such modes are  

the knowledge vectors {𝒚𝑖}. I will also call them medium oscillators. 

Depending on the context, knowledge vectors 𝒂, 𝒃 ∈ {𝒚𝑖} in (103) may bear different meaning. 

In time-correlation measurement, vector 𝒃 is viewed as state vector before-transition, and vector 

𝒂 – as after-transition. In case of spatial correlation, vector 𝒂 may be viewed as observer Alice, 

and vector 𝒃 – as observer Bob. The expression (103) simplifies for 𝑀 = 3, with 𝑓 = 1: 

𝐽(𝒚) = ∑ 𝑟𝒂 ∙ 𝑟𝒃 ∙ cos(𝜑𝒂 − 𝜑𝒃)

𝒂,𝒃∈{𝒚𝑖}

 , where  𝑟𝒂 = √𝑁𝒂ℰ𝒂 𝑁⁄  (104) 

The variance of the measurement scalar (104) is: 
 𝜎𝐽

2 = ∑ 𝑟𝒂
2

(𝒂≠𝒃)∈{𝒚𝑖}

𝑟𝒃
2 (105) 

Signal (104) does not include transitions to ℰ𝒂 = 0 or from ℰ𝒃 = 0. Therefore, it is impossible to 

harvest zero-point energy or detect a zero-energy state with scalar measurement. A narrow-band 

device would have 𝑁𝒃 ≅ 𝑁𝒂 ≅ 𝑁 𝐾⁄  ∀ 𝒂, 𝒃 ∈ {𝒚𝑖}, where 𝐾 is the number of knowledge vectors 

in superposition 𝒚 = ∑𝒚𝑖. If a single transition does not change significantly the energy ℰ𝒂 of a 

given mode, I can also assume ℰ𝒃 ≅ ℰ𝒂 ≅ ℰ ∀ 𝒂, 𝒃 ∈ {𝒚𝑖}, with |∆ℰ|𝒂𝒃 = |ℰ𝒂 − ℰ𝒃| ≪ ℰ. These 

assumptions are equivalent to thermodynamic limit approximation. I then rewrite (104-105) as: 

 𝐽(𝒚) =
ℰ

𝐾
∙ ∑ cos(𝜑𝒂 −𝜑𝒃)

𝒂,𝒃∈{𝒚𝑖}

 (106) 

 𝜎𝐽
2 = ℰ2 ∙ (1 −

1

𝐾
) (107) 

Given 𝜑𝒂 = 𝜑(𝒂); 𝜑𝒃 = 𝜑(𝒃), I evaluate 𝜑𝒂 − 𝜑𝒃 in (106) via linear expansion near initial values  

𝜑(𝒂0); 𝜑(𝒃0): 𝜑𝒂 − 𝜑𝒃 = 𝜑(𝒂0) − 𝜑(𝒃0) + 𝛁𝜑(𝒂) ∙ ∆𝒂 − 𝛁𝜑(𝒃) ∙ ∆𝒃 (108) 

In a case of temporal correlations, 𝒂 = 𝒂(𝑡); 𝒃 = 𝒃(𝑡). With (92-96), I rewrite (108) in the vicinity 

of initial state [𝒂0 = 𝒂(𝑡0)] = [𝒃0 = 𝒃(𝑡0)] as: 

 
𝜑𝒂 − 𝜑𝒃 = 𝜑(𝒂0) − 𝜑(𝒃0) + 𝑖[⟨𝛁𝜑(𝒂)|𝜱𝒂

†|𝒂⟩ − ⟨𝛁𝜑(𝒃)|𝜱𝒃
†|𝒃⟩] ∙ 𝜏

= [
𝑎∗

⟨𝒂|𝒂⟩
∙ 𝜃𝒂 ∙ 𝑎 −

𝑏∗

⟨𝒃|𝒃⟩
∙ 𝜃𝒃 ∙ 𝑏 + 𝑐. 𝑐. ] ∙ 𝜏 = (𝜃𝒂 − 𝜃𝒃) ∙ 𝜏

= (ℰ𝒂 − ℰ𝒃) ∙ 𝜏 ℏ⁄ = ±𝜔𝑎𝑏 ∙ 𝜏 

(109) 

, where 𝜏 = 𝑡 − 𝑡0 is the transition time; 𝛁𝜑(𝒂) is the complex gradient of scalar phase: 

⟨𝛁𝜑(𝒂)| = (
𝜕𝜑

𝜕𝑎
,
𝜕𝜑

𝜕𝑎∗
) =

⟨𝒂|

⟨𝒂|𝒂⟩
∙ (
−𝑖 0
0 𝑖

) , where ⟨𝒂| = (𝑎∗, 𝑎) (110) 

For a device to detect transition 𝒃 → 𝒂, signal 𝐽(𝒚) must vary more than its standard deviation 𝜎𝐽. 

The detection fidelity is characterized by a change from statistical mean, expressed in terms of a 

number of standard deviations. In [41] the half-life threshold was used – the decrease of the signal 

by half from its initial value 𝐽(𝒚)|𝒂=𝒃. For superposition 𝒚 = 𝒂 + 𝒃 in (106-107), it corresponds 

to ∆𝐽 = √2 ∙ 𝜎𝐽. The detection fidelity in this case is 𝑒𝑟𝑓 (1) ≅ 0.84, i.e. the probability the change 

∆𝐽 was due to transition is 84%, and probability that it happened due to statistical error is 16%. 

For 𝒚 = 𝒂 + 𝒃; 𝐾 = 2; from (106-107):  



𝐽(𝒚) = ℰ ∙ (1 + cos(𝜑𝒂 − 𝜑𝒃)) (111) 

𝜎𝐽
2 = ℰ2 2⁄  (112) 

Signal (111) decreases by half from its initial value 𝐽|𝒂=𝒃= 2ℰ, when |𝜑𝒂 − 𝜑𝒃| = 𝜋 2⁄ . Therefore,  

the half-life detection threshold satisfies energy-time uncertainty relation in a form of Mandelstam- 

Tamm bound [42]: |𝜑𝒂 − 𝜑𝒃| = |∆ℰ|𝑎𝑏 ∙ 𝜏 ℏ⁄ = 𝜔𝑎𝑏 ∙ 𝜏 ≥ 𝜋 2⁄  (113) 

I call the superposition of knowledge vectors 𝒂, 𝒃 coherent within interval 𝑡0 ≤ 𝑡 < 𝑡0 + 𝜏, if the 

difference 𝜑𝒂 − 𝜑𝒃 is an analytic function of 𝑡 in the interval. I call 𝜕 ln 𝐽 𝜕𝑡⁄ |𝑡=𝑡0 the transition 

rate. For the coherent superposition of knowledge vectors, with 𝒂(𝑡0) = 𝒃(𝑡0), the transition rate 

𝜕 ln 𝐽 𝜕𝑡⁄ |𝑡=𝑡0 = 0. This result is referred to as Zeno paradox [43]. It is the characteristic feature 

of measurement with quantum device. 

The non-zero transition rate arises from de-coherence of knowledge vectors through random 

phase dispersion caused by various mechanisms, e.g. by: 

1. Rayleigh scattering [44, 45] 

2. Brownian motion [46, 47] 

3. Dispersive media [48, 49] 

4. Recombination of electron-hole pairs in semiconductors [50] 

A transition changes energy (48) by ∆ℰ = ±ℏ𝜔 with equal probability in either direction. The 

case of ∆ℰ = ±𝑛ℏ𝜔, where 𝑛 > 1, is equivalent to 𝑛 consecutive transitions in the same direction. 

I call device which undergoes multiple transitions at random within any given interval ∆𝑡 a 

classical device. In time ∆𝑡 the phases 𝜑𝑖 of knowledge vectors {𝒚𝑖} in (106) undergo a number 

of positive and negative increments with equal probability 𝑝 = 1/2. The resultant increments are 

binomially distributed with mean ∆𝑡 (2𝜏)⁄ , and variance 𝜎2 = 𝑝 ∙ (1 − 𝑝) ∙ ∆𝑡 𝜏⁄ = ∆𝑡 (4𝜏)⁄ . 

Here, 𝜏 is the mean free time between transitions, i.e. de-coherence time. In between transitions, 

the phase difference 𝜑𝒂 − 𝜑𝒃 changes according to (109). It gives rise to the variance in phase 

𝜎𝜑
2 = (𝜔𝜏)2𝜎2 = 𝜔2𝜏∆𝑡 4⁄ , and to the variance in phase difference 𝜎∆𝜑

2 = 4𝜎𝜑
2 = 𝜔2𝜏∆𝑡. 

Figure 11 shows numeric calculation of (106), with binomially distributed phases 𝜑{𝒚𝑖}. The 

calculation established the following: 

 𝐽(𝒚) = ℰ ∙ [1 + (𝐾 − 1) ∙ 𝑒𝑥𝑝(−𝜔2 ∙ 𝜏 ∙ ∆𝑡)] (114) 

The exponential decay (114) is the characteristic feature of a classical process. From (114), the  

transition rate in 𝐾 → ∞ limit: 𝜕 ln 𝐽

𝜕𝑡
|
𝑡=𝑡0

= −(1 −
1

𝐾
) ∙ 𝜔2 ∙ 𝜏 = −𝜔2 ∙ 𝜏 (115) 

The half-life threshold (113), in this case, changes to: 

 𝜔2𝜏∆𝑡 ≥ ln 2 , given 𝜏 ≪ ∆𝑡 (116) 

From (116), ∆𝑡~ ln 2 (𝜔2𝜏)⁄ , where ∆𝑡 is the object’s decay time. The expression (116) 

establishes relation between de-coherence and decay times. Quantum de-coherence has received 

an extensive coverage in last decades. A link between de-coherence and decay has been suggested 

[51]. De-coherence between knowledge vectors is not unlike the spontaneous collapse of wave 

function, a subject of a number of collapse theories [52]. 

Consider a photodetector measuring intensity of incident radiation. A knowledge vector 𝒚𝑖 (a 

medium oscillator) is formed when a set of elements (e.g. electron-hole pairs) on the surface of 

photodetector entangle through some medium, e.g. through electromagnetic field. An analog of 

such entanglement is a Cooper pair in superconductor, mediated by phonon interaction. The 

https://en.wikipedia.org/wiki/Analytic_function
https://plato.stanford.edu/entries/qm-collapse/
https://en.wikipedia.org/wiki/Cooper_pair


surface area which encloses a set of elements in entangled state is limited by the coherence radius 

𝑟 = 2𝜋 𝑐 (𝜅∆𝜔)⁄ , where 𝑐 is the speed of light, 𝜅 is the refractive index of the material. If 𝜌 is the 

number of entangled elements per unit area of the detector; 𝐷𝜔 is the dimensionless scattering 

rate; 𝐷𝜔 ∙ ∆𝜔 is the scattering frequency within ∆𝜔 [rad/s] spectral width, then, the de-coherence 

time 𝜏 is evaluated as: 

𝜏 = (𝜋𝑟2𝜌𝐷𝜔∆𝜔)
−1 = (𝜋 (

2𝜋𝑐

𝜅∆𝜔
)
2

𝜌𝐷𝜔∆𝜔)

−1

=
𝜅2

4𝜋3𝑐2𝜌𝐷𝜔
∆𝜔 (117) 

Combining (117) with (115), I obtain transition rate: 

𝜕 ln 𝐽

𝜕𝑡
|
𝑡=𝑡0

= −
𝜅2𝜔2∆𝜔

4𝜋3𝑐2𝜌𝐷𝜔
  (118) 

In equilibrium, the loss of a number of oscillators in a particular mode is compensated by the 

radiation-stimulated induction into the mode of the same number of oscillators. The energy balance  

equation is: 
𝑅𝜔 ∙ 𝐵𝜔 ∙ ∆𝜔 + 𝜉 ∙ [〈ℰ〉𝜔 −

ℏ𝜔

2
] ∙
𝜕 ln 𝐽

𝜕𝑡
|
𝑡=𝑡0

= 0 (119) 

, where 𝐵𝜔 is the spectral radiance of incident radiation; 𝑅𝜔 is the efficiency of conversion of the 

incident radiation into oscillator energy; 𝜉 is the number of medium oscillators per unit surface 

area of the detector. I have to subtract zero-point energy term ℏ𝜔 2⁄  from the ensemble-average 

energy 〈ℰ〉𝜔 in (119), because an oscillator cannot lose energy in the ground state. From (79,119): 

𝑅𝜔 ∙ 𝐵𝜔 =
𝜉 ∙ 𝜅2

𝜌 ∙ 𝐷𝜔
[
ℏ𝜔3 (4𝜋3𝑐2)⁄

exp (
ℏ𝜔
𝑘𝑇
) − 1

] (120) 

The term in square brackets can be considered as pertaining to the incident radiation, and 

parameters outside the brackets as properties of the detector. Then, (120) can be split into formula 

for the spectral radiance, and formula for the detector efficiency: 

 
𝐵𝜔 =

ℏ𝜔3 (4𝜋3𝑐2)⁄

exp (
ℏ𝜔
𝑘𝑇
) − 1

 (121) 

𝑅𝜔 =
𝜉 ∙ 𝜅2

𝜌 ∙ 𝐷𝜔
=

𝜅2

𝜂 ∙ 𝐷𝜔
  (122) 

, where 𝜂 = 𝜌 𝜉⁄  can be interpreted as the number of entangled elements making up one oscillator. 

The Planck’s formula for the spectral energy density readily follows from (121): 

 

𝑢𝜔 =
4𝜋

𝑐
𝐵𝜔 =

ℏ𝜔3 (𝜋2𝑐3)⁄

exp (
ℏ𝜔
𝑘𝑇
) − 1

 (123) 

 

5. DISCUSSION 

The presented model bears familiar hallmarks of quantum physics. Consider e.g. wave-particle 

duality. The particle properties result from discreteness of probability mass function (4), of energy 

spectrum (Table 1), of proper time (1), of measurement scalar (101,103,106). The discrete values 

of measurement scalar may be associated with observable states of underlying system. The choice 

of observation basis (i.e. the experimental setup) can make quantum leaps between observable 

values look like emission and absorption of particles. 

https://en.wikipedia.org/wiki/Coherence_length
https://en.wikipedia.org/wiki/Refractive_index
https://en.wikipedia.org/wiki/Radiance


Wave properties result from superposition 𝒚 = ∑𝒚𝑖 of knowledge vectors in the measurement 

scalar (103,106). The superposition should rather be called decomposition, as the knowledge 

vector 𝒚 of underlying system is decomposed into a sum of eigenvectors {𝒚𝑖} of the measuring 

device. For a simple case 𝒚 = 𝒂 + 𝒃, the expression for the measurement scalar (111) is identical 

to the intensity distribution in interference pattern in a double-slit experiment. 

Consider another QM hallmark: violation of Bell’s inequalities [53]. The violation of Bell’s 

inequalities can be understood without invoking the concept of wave function collapse. In a typical 

experiment [54, 55] two entangled particles represent the same underlying system, which is being 

observed via two spatially separated devices 𝑨 and 𝑩. An observer Alice is attached to device 𝑨, 

and observer Bob is attached to device 𝑩. If Alice and Bob did not communicate via conventional 

channel, neither of them would know the result of the other. The statistical correlation can only 

be detected when knowledge vectors 𝒂 and 𝒃 converge to form the resultant observation (111). 

The target of experiments on violation of Bell’s inequalities is the cos() function in (111). It shows 

double-slit experiment is about as good experiment on violation of Bell’s inequalities as any other. 

Confusion of statistical correlation with causality in this context led some minds to bewilderment 

about spooky action at a distance [56]. 

Consider the concept of measurement in conventional QM theory. If measurement 𝑸(𝑡) has 

been performed at time 𝑡 = 0, and the result is 𝑞0, the expectation value at time 𝑡 > 0 is given by: 

𝑞(𝑡) = ⟨𝒖0|𝑼(𝑡)𝑸(0)𝑼
†(𝑡)|𝒖0⟩ , where 𝑼(𝑡) = 𝑒𝑥𝑝 (𝑖

𝑯

ℏ
𝑡) ;  𝑯 is Hamiltonian, (124) 

, and 𝒖0 is the state of the system at 𝑡 = 0. Is the system considered closed or open? Conventional 

theory would imply the system is closed, as only a closed system can be described by a state vector. 

If the system is closed, it has to be in energy eigenstate. If 𝒖0 is also an energy eigenstate, then 

from (124), 𝑞(𝑡) ≡ 𝑞0 ∀ 𝑡 ≥ 0, i.e. a closed system ought to be static. The conventional theory 

handles this paradox by considering system quasi-closed, i.e. initially described by a state vector, 

but with 𝑯-matrix having off-diagonal terms. Then 𝑯 is not a true Hamiltonian of the system but 

so-called interaction Hamiltonian, and 𝒖0 is not an eigenstate of 𝑯. 

According to Heisenberg picture of QM formalism, the measurement 𝑸(𝑡) = 𝑼(𝑡)𝑸(0)𝑼†(𝑡) 
is obtained from measurement 𝑸(𝑡 = 0) via unitary transformation 𝑼(𝑡) of observation basis. 

Since the result of the measurement at 𝑡 = 0 is one of the eigenvalues of operator 𝑸(0), the state 

𝒖0 of the system at 𝑡 = 0 has to be one of the eigenstates of 𝑸(0). Attempts to understand this fact 

have needlessly led Copenhagen School to the concept of wave function collapse. If 𝒖𝑠 are 

eigenvectors of 𝑸(0), corresponding to eigenvalues 𝑞𝑠, then 

 𝑸(0) =∑|𝒖𝑠⟩𝑞𝑠⟨𝒖𝑠| =

𝑠

∑|

𝑠,𝑗,𝑘

𝒇𝑗⟩⟨𝒇𝑗|𝒖𝑠⟩𝑞𝑠⟨𝒖𝑠|𝒇𝑘⟩⟨𝒇𝑘| (125) 

, where I converted to eigenbasis 𝒇𝑘 of 𝑯-matrix. It allows rewriting (125) as 

𝑞(𝑡) = ∑⟨𝒖0|𝒇𝑗⟩

𝑠,𝑗,𝑘

⟨𝒇𝑗|𝒖𝑠⟩𝑞𝑠⟨𝒖𝑠|𝒇𝑘⟩⟨𝒇𝑘|𝒖0⟩ ∙ 𝑒𝑥𝑝 (𝑖
𝐸𝑗 − 𝐸𝑘

ℏ
𝑡) (126) 

, where 𝐸𝑗 are eigenvalues of 𝑯. Coefficients ⟨𝒖0|𝒇𝑗⟩⟨𝒇𝑗|𝒖𝑠⟩𝑞𝑠⟨𝒖𝑠|𝒇𝑘⟩⟨𝒇𝑘|𝒖0⟩ are all real because 

their transpose by 𝑗, 𝑘 indices is equal to their adjoint. Hence, I rewrite (126) as: 

𝑞(𝑡) = ∑⟨𝒖0|𝒇𝑗⟩⟨𝒇𝑗|𝒖𝑠⟩𝑞𝑠⟨𝒖𝑠|𝒇𝑘⟩⟨𝒇𝑘|𝒖0⟩ ∙ 𝑐𝑜𝑠 (
𝐸𝑗 − 𝐸𝑘

ℏ
𝑡)

𝑠,𝑗,𝑘

 (127) 

From (127) it is clear that (𝑞(0) − 𝑞(𝑡))|𝑡→0 ∝ 𝑡
2 [43, 57], which can also be demonstrated if 

(127) is broken into power series of 𝑡 near 𝑡 = 0: 



𝑞(𝑡) = ⟨𝒖0|𝑐𝑜𝑠 (𝑎𝑑 (
𝑯
ℏ
𝑡))𝑸|𝒖0⟩ = 𝑞0 −

𝑡2

2ℏ𝟐
⟨𝒖0|[𝑯, [𝑯,𝑸]]|𝒖0⟩

+
𝑡4

24ℏ4
⟨𝒖0| [𝑯, [𝑯, [𝑯, [𝑯,𝑸]]]] |𝒖0⟩ + 𝑜(𝑡

6) 

(128) 

, where 𝑎𝑑(𝑯)𝑸 = [𝑯,𝑸] = 𝑯𝑸− 𝑸𝑯 are commutator brackets. If the system was in state 𝒖0 at 

𝑡 = 0 then the probability 𝑃(𝑡) to find it in state 𝒖0 at 𝑡 > 0 is: 

𝑃(𝑡) =∑𝑃𝑗𝑃𝑘 ∙ 𝑐𝑜𝑠 (
𝐸𝑗 − 𝐸𝑘

ℏ
𝑡)

𝑗,𝑘

 , where 𝑃𝑘 = |⟨𝒇𝑘|𝒖0⟩|
2 (129) 

From (127-129) it follows that 𝜕𝑞(𝑡) 𝜕𝑡⁄ |𝑡=0 = 0; 𝜕𝑃(𝑡) 𝜕𝑡⁄ |𝑡=0 = 0 leading to what is 

perceived as quantum Zeno effect. 

The eigenvalues 𝐸𝑗 of 𝑯-matrix are not true energy levels of the system because 𝑯-matrix is 

not a true Hamiltonian. They can also be defined up to an arbitrary constant, as only the difference 

𝐸𝑗 − 𝐸𝑘 matters for the dynamics of the system. The subtraction of a constant from eigenvalues of 

𝑯-matrix in (127-129) doesn’t change the expectation value 𝑞(𝑡). Such technique is called re-

normalization. The re-normalization [31] is used in conventional theory to “resolve” various 

ultraviolet catastrophes, including problem of infinite zero-point energy density resulting from 

ℏ𝜔 2⁄  term in (79). The problem with that approach is that ℏ𝜔 term in (48,79) already refers to 

the difference between energy levels. Therefore, renormalization cannot possibly help here. Other 

problem with conventional theory is that it does not comply with Second Law of Thermodynamics 

(SLT), as Neumann’s entropy [58] is invariant under unitary transformations. The SLT trumps any 

other law in physics, so any theory or model which is not compliant with SLT is faulty. 

In the presented model, the canonical state vector (22) of underlying system has an associated 

value of time (1). The multiple possible histories of underlying system are represented by the 

sequences of statistical ensembles (𝑛𝑖) arranged by time progression rule (2,3). The progression 

rule (2,3) results in increase of entropy (77) with time. In thermodynamic limit, the time 

progression of underlying system is approximated by rather featureless exponential decline (27). 

The observational diversity is rooted not in dynamics of underlying system, but in the dynamics 

(91-92) of observation basis. 

 

This work has been motivated, in part, by: 

• a perception of a common mechanism which might account for similar traits in vastly different 

entities 

• an apprehension that modern science mostly operates within confinement of a primitive 

realism, which presents the world as a collection of solids of various shapes, liquids, gases, 

and progressively more exotic objects, all the way to the not quite defined notions of dark 

energy and dark matter, purported to make up 95% of the “reality”; with all those things 

existing somewhere “out there” beyond the tip of our noses 

• a sense of contradiction between assumption of causal relationships which modern physics 

strives to establish, and probabilistic nature of observation outcome, implying there is no such 

thing as causality, just correlation 
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,
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ℇ 𝑔(ℰ;𝑁, {𝑝𝑖}) ℇ 𝑔(ℰ;𝑁, {𝑝𝑖}) ℇ 𝑔(ℰ;𝑁, {𝑝𝑖}) ℇ 𝑔(ℰ;𝑁, {𝑝𝑖}) 

0.000000 1 0.000000 1 0.000000 1 0.000000 1 

0.001998 2 0.003328 6 0.008299 20 0.036368 42 

0.007992 2 0.009972 3 0.016598 30 0.072735 210 

0.017982 2 0.009994 3 0.024828 30 0.107827 105 

0.031968 2 0.013311 6 0.024966 30 0.109103 140 

0.049951 2 0.023262 6 0.033127 20 0.110476 105 

0.071930 2 0.023328 6 0.033196 20 0.144194 420 

0.097905 2 0.029951 6 0.033265 20 0.145567 42 

0.127878 2 0.039846 3 0.041495 120 0.146843 420 

0.161847 2 0.040023 3 0.049521 20 0.180562 105 

0.199813 2 0.043196 6 0.050072 20 0.181935 840 

0.241778 2 0.043329 6 0.057889 60 0.183211 105 

0.287740 2 0.053246 6 0.058024 30 0.213187 140 

0.337700 2 0.063064 6 0.058162 30 0.215653 105 

0.391659 2 0.063396 6 0.058302 60 0.218302 1260 

0.449618 2 0.069775 6 0.066188 60 0.220951 105 

0.511576 2 0.069997 6 0.066393 30 0.223804 140 

0.577534 2 0.083198 6 0.066601 60 0.249555 210 

0.647492 2 0.089556 3 0.074556 60 0.250928 210 

0.721452 2 0.090154 3 0.074696 20 0.253394 630 

[…] […] […] […] […] […] […] […] 

640.1354 2 952.5446 6 929.0220 30 333.7789 105 

644.8379 2 955.9414 3 929.4275 60 334.1844 210 

649.6592 2 956.3468 6 930.8138 20 335.5707 42 

654.6150 2 957.7331 6 934.0276 20 337.6184 140 

659.7260 2 962.0473 6 934.7208 60 338.3115 210 

665.0203 2 963.1459 6 935.8194 20 339.4101 42 

670.5388 2 968.1543 3 940.4212 30 342.8495 105 

676.3459 2 968.8474 6 941.1144 20 343.5426 42 

682.5595 2 974.9556 6 946.8165 20 348.0859 42 

689.4673 2 981.7580 3 953.2134 5 353.3277 7 

 

  Table 1 

ℰ, 𝑔(ℰ;𝑁, {𝑝𝑖}) value pairs calculated from (9) for four sets of parameters 𝑁, {𝑝𝑖} using [18] 

algorithm for finding partitions {𝑛𝑖} of integer 𝑁 into ≤ 𝑀 parts. For each partition {𝑛𝑖} I 
calculated the value of ℰ and multiplicity 𝐷(ℰ;𝑁,𝑀) of multinomial coefficient in (4) [80]. 

Finally, 𝑔(ℰ;𝑁, {𝑝𝑖}) = 𝑆𝑈𝑀(𝐷) for each distinct value of ℰ produced the results for the 

table. I display the first 20 and the last 10 records from the table. 
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Figure 1 

Distinct values of ℰ in increasing order calculated from (9) with (5) and (1), using 

[18] algorithm for finding partitions (𝑛𝑖) of integer 𝑁 into ≤ 𝑀 parts. The values of 

M and N are given on the graphs. The graphs represent complete set of distinct values 

of ℰ for the given values of M and N. The graphs demonstrate close to linear 

dependence of ℰ on “quantum number” in the vicinity of equilibrium ℰ = 0 for 

statistical ensembles with M=3. This is the characteristic feature of statistical 

ensemble of cardinality M=3. Away from equilibrium and close to the boundary of 

hyper-plane (1) the linear behavior is violated.  
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Figure 2 

Distinct values of ℰ in increasing order calculated from (9) with (5) and (1), using [18] 

algorithm for finding partitions (𝑛𝑖) of integer 𝑁 into ≤ 𝑀 parts. The values of M and 

N are given on the graphs. The graphs represent complete set of distinct values of ℰ 

for the given values of M and N. 
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The total number 𝐿(𝑁,𝑀) of distinguishable states of statistical ensemble (curves 1, 3), 

and the total number ∑ 1{ℰ}  of distinct {ℰ} values (curves 2, 4) as functions of 𝑁 for two 

sets of probabilities (5): 
1. 𝐿(𝑁,𝑀) for 𝑀 = 5 

2. ∑ 1{ℰ}  for 𝑀 = 5 

3. 𝐿(𝑁,𝑀) for 𝑀 = 3 

4. ∑ 1{ℰ}  for 𝑀 = 3 

The values on curve 1 are by factor 𝑀! = 5! greater than on curve 2 as 𝑁 → ∞. The 

values on curve 3 are by factor 𝑀! = 3! greater than on curve 4 as 𝑁 → ∞. 

Using Stirling’s approximation for large 𝑁 in formula (13) one can see the curves grow 

proportionally to 𝑁𝑀−1 as 𝑁 → ∞ 

𝑁 
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Figure 4 

Function 𝜇(𝑁; {𝑝𝑖}) calculated for two sets of probabilities {𝑝𝑖}. 
Blue lines were calculated using exact formula (7). Red lines 

were calculated using thermodynamic limit approximation (17) 

 



  

Figure 5 

Values of √ℰ/𝑁 calculated as a function of 𝑛1/𝑁 with probabilities (5) for 

four sets of parameters: 

1. 𝑀 = 5;  𝑁 = 1000 

2. 𝑀 = 5;  𝑁 = 10 

3. 𝑀 = 2;  𝑁 = 1000 

4. 𝑀 = 2;  𝑁 = 4 

Blue lines were calculated using exact formula (9). Green dash lines were 

calculated using thermodynamic limit approximation (18). Red lines were 

calculated using quadratic form (24) approximation. For a given value of 𝑛1 

the values {𝑛𝑖>1} were distributed proportionally to corresponding 

probabilities {𝑝𝑖>1}. For large value of 𝑁 = 1000 the blue lines and green 

dash lines overlap closely as seen on curves 1 and 3. For small values of 𝑁 

the thermodynamic limit approximation is not accurate, and blue lines differ 

from green dash lines as seen on curves 2 and 4. Red lines overlap with blue 

lines in close proximity to the minimum (10) of ℰ. 
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Figure 6 

Values of ln 𝑃({𝑛𝑖}; 𝑁, {𝑝𝑖}) calculated as a function of 𝑛1 for 

𝑁 = 1000 and four sets of probabilities {𝑝𝑖} 
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Blue lines were calculated using exact formula (4). Red lines 

were calculated using multivariate normal approximation (28). 

For the given value of 𝑛1 the distribution of values {𝑛𝑖>1} is 

proportional to the corresponding probabilities {𝑝𝑖>1} 
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Figure 7 

The number of distinguishable states 𝐿(ℇ0; 𝑁,𝑀) of statistical ensemble having 

ℇ ≤ ℇ0 as a function of ℇ0 for three sets of the parameters and probabilities (5): 

1. 𝑀 = 7;  𝑁 = 189 

2. 𝑀 = 5;  𝑁 = 600 

3. 𝑀 = 3;  𝑁 = 900 

4. 𝑀 = 2;  𝑁 = 1000 

Solid lines are the results of calculation using exact formulas (4) and (9). Dash 

lines represent thermodynamic limit approximation (36). The graphs 

demonstrate thermodynamic limit provides the better approximation the larger is 

the ratio 𝑁 𝑀⁄ . Solid lines level off close to ℇ𝑚𝑎𝑥 because density of states per 

interval 𝑑ℇ decreases near ℇ𝑚𝑎𝑥 due to non-spherical ℇ-domain boundary of 

hyper-plane (1). The boundary is defined by 𝑛𝑖 ≥ 0 ∀  𝒊 ∈ 𝑮 

 

 

 

 

 

First three moments of ℰ plotted as dots vs. total number N of microstates for 

three sets of probabilities {𝑝𝑖}. The value of the third moment 𝜅3 is reduced by a 

factor of 2 to show its asymptotic behavior comparing with the first two moments.  
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Figure 8 

The mean value 〈ℰ〉, the variance 𝜎ℰ
2, and the third moment 𝜅3 vs. total number N of 

microstates for three values of 𝑀 and probabilities (5). The graphs have been 

calculated using exact expressions (42-44) with probability mass function (4). The 

value of the third moment 𝜅3 is reduced by a factor of 2 to show its asymptotic 

behavior comparing with 〈ℰ〉 and  𝜎ℰ
2. For each set of parameters, the curves 

approach (𝑀 − 1)/2 values as 𝑁 ∙ 𝑝𝑖 → ∞ 
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Figure 9 

Comparison of 𝑆0(𝑀) in (76) with ln𝑀 
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Figure 10 

Difference ∆ℇ between adjacent energy levels (9), averaged over distinct states of 

statistical ensemble with the given value of 𝑁, and 𝑀 = 3. The curve is 

approximated by (78) as 𝑁 → ∞ 



  

Figure 11 

Blue line is a calculation of measurement scalar (106), with binomially distributed phases 

𝜑{𝒚𝑖}, as a function of time 𝑡. The red line is a plot of formula (114). The plots have been 

produced using GNU Octave (MATLAB) code http://phystech.com/download/ph.m 

with the following parameters: 

• number of knowledge vectors in superposition 𝒚 = ∑𝒚𝑖;  𝐾 = 100 

• mean free time between transitions of a knowledge vector 𝒚𝑖: 𝜏 = 0.01 

• characteristic frequency 𝜔 = 8 

The plots have been normalized to 1. As the number of knowledge vectors 𝐾 increases 

the blue curve smoothers and becomes identical with red curve.  
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