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For the mind of man is far from the nature of a clear and equal glass, 

wherein the beams of things should reflect according to their true 

incidence; nay, it is rather like an enchanted glass, full of superstition and 

imposture, if it be not delivered and reduced. 

Francis Bacon, Novum Organum, Book I, Aphorism XLI 

 

Physics concerns itself with relations between variables, generally in a form of equation. For 

both sides of an equation to simultaneously have definite values, let alone these values be equal, 

they must represent commuting observables. QM formalism is grounded in ephemeral entity called 

quantum state1, identified by values of a complete set of commuting observables (CSCO) [1]. 

Consequently, an equation does not merely relate numeric values of the observables; it asserts the 

existence of the specific state those observables denote. This “fact of existence” and the numeric 

values of observables constitute classical information, which emerges only through the act of 

measurement. Thus, any equation involving definite values of observables implies measurement. 

Quantum state, as an entity, arises from measurement, as output state of measuring device [2]. 

There is no state before measurement2, as demonstrated by Alain Aspect’s [3] Nobel prize-winning 

experiments. Contrary to a common belief 1 rooted in dogmatic realism3, quantum state does not 

impart the knowledge of an insinuated external system, but the configuration of measuring device, 

as explicated in Appendix A. From this premise, I expound on QM formalism, to reach conclusions 

on several topics of interest, and answer some questions: 

1. What is the amount of information in measuring device output? 

2. What determines the output of measuring device, aka quantum state? 

3. What is the amount of information required to set device to a certain configuration? 

4. What is the relation between preparation and measuring device? 

5. What is the relation between quantum state and quantum ensemble? 

6. Is there a boundary between measuring device and measured entity? 

7. Does quantum state (aka wave function) collapse upon measurement? 

8. Are event outcomes truly probabilistic as commonly believed? 

9. What is the significance of global phase? 

10. What is the boundary between measuring device and observer? 

11. What is the role of observer, debated [4, 5, 6] since very inception of quantum mechanics? 

 
1 Quantum state is a mathematical entity that embodies the knowledge of a quantum system – Wikipedia, 2025 
2 This straightforward argument obliterates a number of paradoxes rooted in falsehoods permeating the field of 

quantum physics. One infamous example is the so-called Schrödinger's cat paradox [4], premised on false assumption 

that there exists a state of the cat before the cat is observed 
3 There is realism, and there is dogmatic realism. Realism is the restatement of objective facts and nothing but facts, 

even if no finite set of objective facts can explain itself [13]. Dogmatic realism (expression coined by Heisenberg [35] 

for the likes of Einstein and Schrödinger) builds on a subset of facts with added speculative assumptions (dogmas), 

such as a priori assumption of existence of an entity to be measured, external to measuring device 

https://en.wikipedia.org/wiki/Quantum_state


A device of cardinality 𝑀 is represented by a Hermitian operator 𝑿, in its eigenbasis, as: 

𝑿 = ∑ 𝑥𝑘 ∙ |𝒙𝑘⟩⟨𝒙𝑘|

𝑀

𝑘=1

(1) 

, where 𝒙𝑘 is the outcome of measurement event, corresponding to obtained device reading 𝑥𝑘. 

Outcomes {𝒙𝑘} are called eigenstates, and corresponding device readings {𝑥𝑘} are called 

eigenvalues. Throughout this paper 𝑀 is the device cardinality in fundamental representation [7]. 

A measurement consists of quantum ensemble [8] of 𝑁 = ∑ 𝑛𝑘
𝑀
𝑘=1  events; 𝑛𝑘 being the number 

of occurrences4 of outcome 𝒙𝑘. Output state 𝝍 is deemed a superposition5 of outcomes {𝒙𝑘}: 

|𝝍⟩ = ∑ 𝑋𝑘 ∙ |𝒙𝑘⟩

𝑀

𝑘=1

= ∑ 𝑋(𝑥) ∙
{𝑥}

|𝒙⟩ (2) 

, where {𝑋𝑘} are complex amplitudes. 𝑃𝑘 = |𝑋𝑘|2 is the probability of outcome 𝒙𝑘 by Born rule 

[9], with total probability 𝑃 = ⟨𝝍|𝝍⟩ = ∑ 𝑃𝑘
𝑀
𝑘=1 = 1. Instead of using index 𝑘 to mark 

eigenvalues and eigenstates, the right side of (2) uses eigenvalues {𝑥} as unique index, to express 

output state 𝝍 in terms of wave function 𝑋(𝑥). 

The standard expression (2) for quantum state pertains to neither an ensemble of systems, nor 

an individual system, as it contains no attributes specific to either. Even if (2), misleadingly, has 

adjective quantum attached, it represents classical information made accessible by measurement. 

It is this information, that materializes as object, by observation6/registration, not a speculative 

system or ensemble of systems, which, in various models7 [11, 12],  presumably exist “out there”, 

extraneous to obtained information [13]. The assumption of information only “representing” real 

physical system8, instead of being one and the same, leads to predictions contradicting those of 

quantum theory9 [14]. The very notion of a system, as an entity external to materialized 

information, is a fallacy, equivalent to an assumption of hidden variables. This conclusion makes 

the discourse [15] on ontic vs. epistemic nature of wave function meaningless. 

The information in output state (2), is encoded in complex amplitudes 𝑋𝑘 = |𝑋𝑘| ∙ 𝑒𝑥𝑝(𝑖𝜑𝑘). 

I shall obtain expressions for the amount of information encoded in probabilities {𝑃𝑘}, and in 

phases {𝜑𝑘}, and show that in the limit 𝑁 → ∞ all information is contained in phases {𝜑𝑘}, not in 

probabilities {𝑃𝑘}. 

 
4 E.g., 𝑛𝑘 may be the number of photons of polarization 𝒙𝑘 registered by photodetector in a single shot (measurement) 
5 This disposition does away with absurd idea of wave function collapse, and with associated measurement “paradox” 

[17], simply because wave function 𝑋(𝑥) in (2) being classical information, does not even exist prior to measurement 
6 The process of observation/registration is described in Appendix C 
7 All QM “interpretations” are rife with falsehoods, as exemplified by the following quote from [11]: “a momentum 

eigenstate … represents the ensemble whose members are single electrons each having the same momentum, but 

distributed uniformly over all positions”. Momentum and position are conjugate observables. Assuming an individual 

particle possesses both a specific momentum and a specific (albeit statistically distributed) position implies classicality 
8 All models wherein wave function “represents” physical reality, otherwise described by something, e.g., by some 

[hidden] variables, other than solely by wave function itself, have been discredited [40, 13] 
9 The assumptions, used in referenced PBR theorem’s [14] proof, are equivalent to an assumption of hidden variables, 

as attributes of insinuated “real physical system” 



I first consider finite ensemble {𝑛𝑘}, and then take the limit 𝑁 → ∞. As events with the same 

outcome are indistinguishable10, there are Ω ways to arrange events in {𝑛𝑘} sample: 

Ω =
𝑁!

∏ 𝑛𝑘!𝑀
𝑘=1

(3) 

If {𝑛𝑘} is a classical ensemble, then each of 𝑁 events is a separate, distinct measurement, with no 

event correlation. The amount of information, carried by classical ensemble of 𝑁 measurements, 

is Boltzmann’s entropy: 𝐻𝐵 = ln Ω (nats). The amount of information per measurement is 

ln(Ω) 𝑁⁄ . In quantum ensemble, where event outcomes are correlated, all 𝑁 events constitute one 

measurement. Therefore, for quantum ensemble, ln(Ω) 𝑁⁄  gives the amount of information carried 

in events correlation of the whole {𝑛𝑘} event sample. For quantum ensemble with given {𝑛𝑘}, 

output states (2) only differ in phases {𝜑𝑘} of amplitudes {𝑋𝑘}. Given fixed {𝑛𝑘}, different sets of 

phases {𝜑𝑘} can only correspond to different event correlations in {𝑛𝑘} sample. 

Taking the limit 𝑁 → ∞, I obtain the amount of information in device output, per measurement, 

encoded in phases {𝜑𝑘}. It comes out equal to Shannon’s entropy 𝐻𝑆 [16]: 

𝐻𝐵

𝑁
|

𝑁→∞
= − (

(𝑀 − 1)

2𝑁
ln 2𝜋𝑁 + ∑

(𝑛𝑘 +
1
2)

𝑁
ln

𝑛𝑘

𝑁

𝑀

𝑘=1

)

𝑁→∞

=

= − ∑ 𝑃𝑘 ∙ ln 𝑃𝑘

𝑀

𝑘=1

≡ 𝐻𝑆  (𝑛𝑎𝑡𝑠)       , 𝑤ℎ𝑒𝑟𝑒  𝑃𝑘 =
𝑛𝑘

𝑁
|

𝑁→∞
(4)

 

To evaluate the amount of information encoded in probabilities {𝑃𝑘}, I note, the number of 

different event samples {𝑛𝑘} with no distinction for event correlation, is 

Θ =
(𝑁 + 𝑀 − 1)!

𝑁! ∙ (𝑀 − 1)!
(5) 

The amount of information encoded in population numbers {𝑛𝑘} of classical ensemble is 𝐻Θ =

ln(Θ) 𝑛𝑎𝑡𝑠. The amount of information carried by population numbers in quantum ensemble is 

𝐻Θ 𝑁⁄ . The amount of information 𝐻𝑃 encoded in probabilities {𝑃𝑘} is then: 

𝐻𝑃 =
𝐻Θ

𝑁
|

𝑁→∞
→ (𝑀 − 1)

ln 𝑁

𝑁
|

𝑁→∞
→ 0 (6) 

Thus, the amount of information carried by output state (2), in the limit 𝑁 → ∞ equals Shannon’s 

entropy (4). Information is encoded in phases {𝜑𝑘} of complex amplitudes. Probabilities {𝑃𝑘} only 

convey the amount of information (4) in output state, not the information itself. The bandwidth 

(6), taken by {𝑃𝑘} values, is the protocol overhead [16], vanishingly small for large event samples. 

More general formalism, which covers correlated, and uncorrelated event samples, is that of a 

density matrix 𝝆. Loss of correlation is associated with extraction11 of information from device 

output, in amount given by von Neumann entropy [17] 𝐻𝑁 = −𝑇𝑟(𝝆 ln 𝝆) 𝑛𝑎𝑡𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡⁄ . 

 
10 Events can only be distinguished by the outcome of measurement, i.e., by device reading, and by no other parameter 

or hidden variable. Thus, 𝑛𝑘 events corresponding to the same device reading 𝑥𝑘 are indistinguishable 
11 The extraction of information from device output is done via process of observation/registration (Appendix C) 

https://en.wikipedia.org/wiki/Nat_(unit)


The amount of available information 𝐻𝐴 in device output, also called knowledge [13, 18], is the 

difference: 𝐻𝐴 = 𝐻𝑆 − 𝐻𝑁. It matches the so-called Holevo bound [19, 20] for the amount of 

accessible information. From (4), the maximum amount of information in measuring device 

output is 𝐻𝑀 = ln(𝑀) 𝑛𝑎𝑡𝑠, corresponding to output state (2) with equal probabilities 

{𝑃𝑘 = 1 𝑀⁄ }. The actual amount of information 𝐻𝐴 in device output may vary from 0 to ln(𝑀) 

𝑛𝑎𝑡𝑠, depending on {𝑃𝑘} distribution in (4) and depending on if 𝝆 is a pure state, or a mixture. For 

a mixture, 𝐻𝑁 > 0. In a mixture, all or part of information contained in phases {𝜑𝑘} is lost, 

signified by reduction of off-diagonal terms of 𝝆. There is the following relation: 

(𝐻𝐴 = 𝐻𝑆 − 𝐻𝑁) ≤ 𝐻𝑆 ≤ 𝐻𝑀 (7) 

I have thus derived the amount of information 𝐻𝐴 in device output. The related challenge is to 

find the amount of information in device itself. In presented paradigm, information in device 

output is part of total information contained in device configuration. 

The max amount of information an entity, such as device, may carry is ln(𝐾) 𝑛𝑎𝑡𝑠, where 𝐾 

is the number of orthogonal base elements of entity’s algebra. Base elements are information-

encoding operators. Normalized coefficients of decomposition of an entity into base elements are 

amplitudes. The squares of amplitudes’ absolute values are the probabilities to which formula (4) 

for quantifying information applies [21]. A device Hermitian operator decomposes into 𝐾 = 𝑀2 

base operators of 𝑼(𝑀) Lie algebra (Gell-Mann decomposition), where 𝑀 is device cardinality in 

fundamental representation. Therefore, a device may contain maximum ln(𝑀2) 𝑛𝑎𝑡𝑠 of 

information, associated with 𝑀2 base elements, and 𝑀2 real parameters of decomposition. 

Out of 𝑀2 real parameters defining device operator, 𝑀 are eigenvalues, invariant under device 

unitary transformation. The rest 𝑀2 − 𝑀 parameters define device internal state, i.e. configuration. 

Thus, setting device configuration, by 𝑆𝑈(𝑀) process 𝑿 → 𝑽†𝑿𝑽, which I call preparation, takes 

ln(𝑀2 − 𝑀) 𝑛𝑎𝑡𝑠 of information. The reverse process 𝑽𝑿𝑽† → 𝑿 diagonalizes device operator 

into form (1). For a device with non-degenerate eigenvalues {𝑥𝑘}, transformation 𝑽, which 

diagonalizes device operator, is unique up to 𝑀 global phases of eigenvectors {𝝍𝑛} of 𝑽. I call 

eigenvectors {𝝍𝑛} the state basis in Hilbert space of device 𝑿 output, vs. device eigenbasis {𝒙𝑘}. 

For 𝑆𝑈(𝑀) transformation 𝑽, the sum of global phases of its eigenvectors must be 0. Thus, the 

number of parameters defining global phases of {𝝍𝑛} is 𝑀 − 1. The global phases of {𝝍𝑛} account 

for ln(𝑀 − 1) 𝑛𝑎𝑡𝑠, which are not converted into classical information, out of total ln(𝑀2 − 𝑀) 

𝑛𝑎𝑡𝑠 in device configuration. The ln(𝑀) 𝑛𝑎𝑡𝑠, which are converted into classical information, 

determine which {𝝍𝑛} vector is the output state (2). Thus, the configuration of measuring device 

solely determines output state (2), as one of {𝝍𝑛} basis states. 

The output state (2) corresponds to a certain event correlation in quantum ensemble {𝑛𝑘}. This 

conclusion defies common view that event outcomes are strictly probabilistic12. Truly probabilistic 

event outcomes correspond to a statistical mixture, i.e. classical ensemble, that has no event 

correlation. The event correlation information is carried by phases {𝜑𝑘} of complex amplitudes. 

 
12 It would be wrong to assume events form a sequence. The word “sequence” implies some ordering parameter 

(hidden variable) for event outcomes. Eigenvalue is the only parameter which identifies event outcome 



Appendix B describes how event correlation may define phases {𝜑𝑘}. The reference phase with 

respect to which {𝜑𝑘} phases and corresponding event correlation are defined, is the global phase. 

The above consideration resolves the problem of randomness in event outcomes of quantum 

measurement: He indeed does not play dice [22]. Instead, Old Man makes up the mind [2] of 

measuring device, by setting device internal state, which ultimately determines13 event correlation. 

I call device (1) configuration optimal if measurement output contains maximum possible 

𝐻𝐴 = 𝐻𝑀 = ln(𝑀) 𝑛𝑎𝑡𝑠 of information. From (4), a device with optimal configuration has 

eigenbasis {𝒙𝑘} such that 𝑃𝑘 ≡ |𝑋𝑘|2 = |⟨𝒙𝑘|𝝍⟩|2 = 1 𝑀⁄  ∀𝑘. Transformation 𝑽 from state basis 

{𝝍𝑛} to optimal eigenbasis {𝒙𝑘} is: 

𝑉𝑘,𝑛 = ⟨𝒙𝑘|𝝍𝑛⟩ = 𝑀−1 2⁄ 𝑒𝑥𝑝(𝑖𝜋(𝑛 − 1)(2𝑘 − 1 − 𝑀) 𝑀⁄ + 𝑖𝜑𝑘 − 𝑖𝜑0);   𝑘, 𝑛 = 1,2, … 𝑀   (8) 

, where {𝜑𝑘} are phases of amplitudes 𝑋𝑘 = |𝑋𝑘| ∙ 𝑒𝑥𝑝(𝑖𝜑𝑘); global phase 𝜑0 = 𝜋𝑆𝑀 2𝑀⁄ , where 

𝑆𝑀 is OEIS cyclic sequence A111951: 𝑆(𝑀=1,2,3,4,5,6,7,8,… ) =0,3,1,2,2,1,3,0, … The global phase 

𝜑0 is subtracted to ensure 𝑑𝑒𝑡(𝑽) = 1, for 𝑆𝑈(𝑀) compliance. 

Columns of matrix 𝑽 are 𝑀 orthogonal output states {𝝍𝑛}, represented in optimal device 

eigenbasis {𝒙𝑘}. Introducing eigenvalues {𝑦𝑛 = 𝑛 − 1}, marking states {𝝍𝑛}, I write {𝝍𝑛} as: 

|𝝍𝑛⟩ = 𝑀−1 2⁄ ∑ 𝑒𝑥𝑝(𝑖𝑦𝑛𝑥𝑘 + 𝑖𝜑𝑘 − 𝑖𝜑0)|𝒙𝑘⟩

𝑀

𝑘=1

    ;   {𝑦𝑛 = 𝑛 − 1}   ;   𝑛 = 1,2 … 𝑀 (9) 

Prior to measurement, state (2) does not exist. State 𝝍 can only be expressed in standard form 

(2) after measurement has been completed and amplitudes {𝑋𝑘} acquired values 𝑋𝑘 = ⟨𝒙𝑘|𝝍⟩. 

Expression (2) is the hindsight of pre-measurement state 𝝍 in the context of post-measurement 

information. 

In hindsight, measurement generates transition from pre-measurement state 𝝍 to post-

measurement state 𝝍′ via 𝑆𝑈(𝑀) transformation 𝑼 = 𝑒𝑥𝑝(𝑖𝑿) = ∑ 𝑒𝑥𝑝(𝑖𝑥𝑘) ∙ |𝒙𝑘⟩⟨𝒙𝑘|𝑀
𝑘=1 : 

𝝍′ = 𝑼𝝍 = ∑ 𝑒𝑥𝑝(𝑖𝑥𝑘)

𝑀

𝑘=1

|𝒙𝑘⟩⟨𝒙𝑘|𝝍⟩ = ∑ 𝑋𝑘𝑒𝑥𝑝(𝑖𝑥𝑘)

𝑀

𝑘=1

|𝒙𝑘⟩   ;   𝑋𝑘 = ⟨𝒙𝑘|𝝍⟩ (10) 

The distinctness of 𝝍 and 𝝍′, i.e. orthogonality ⟨𝝍|𝝍′⟩ = 0, signifies the fact of completed 

measurement. From (10), the orthogonality ⟨𝝍|𝝍′⟩ = 0 is expressed by ∑ 𝑃𝑘𝑒𝑥𝑝(𝑖𝑥𝑘) = 0𝑀
𝑘=1 . 

With optimal device configuration, 𝝍 and 𝝍′ are two of {𝝍𝑛} states, and 𝑽†𝑼𝑽 is a permutation 

matrix between {𝝍𝑛} vectors. The complete set of orthogonality conditions: ⟨𝝍𝑛|𝝍𝑛+𝑚⟩ =

⟨𝝍𝑛|𝑼𝑚|𝝍𝑛⟩ = 0 leads to equations for 𝑀 device eigenvalues {𝑥𝑘} and 𝑀 probabilities {𝑃𝑘}: 

         ∑ 𝑥𝑘

𝑀

𝑘=1

= 0   ;   ∑ 𝑃𝑘

𝑀

𝑘=1

= 1   ;     ∑ 𝑃𝑘𝑒𝑥𝑝(𝑖𝑚𝑥𝑘)

𝑀

𝑘=1

= 𝛿𝑚,𝑀  ;   𝑚 = 1,2, … , 𝑀      (11) 

 
13 The heart of man plans his way, but the Lord establishes his steps [Proverbs, 16:9] 

https://oeis.org/A111951


Equations (11) resolve to: 

    𝑥𝑘 = 𝜋(2𝑘 − 1 − 𝑀) 𝑀⁄    ;     𝑃𝑘 = 1 𝑀⁄   ;     𝑘 = 1,2, … 𝑀 (12) 

E.g., {𝑥𝑘} = ± 𝜋 2⁄  (𝑟𝑎𝑑𝑖𝑎𝑛𝑠), for spin-1 2⁄  particle. With (12) transformation 𝑼 = 𝑒𝑥𝑝(𝑖𝑿) is 

cyclic. The period is 𝑀 for odd 𝑀, and 2𝑀 for even 𝑀: 𝑼𝑀𝝍𝑛 = (−1)𝑀−1𝝍𝑛, which ensures 

𝑑𝑒𝑡(𝑼) = 1. 

An arbitrary output state (2) can be expressed in state basis {𝝍𝑛} or device eigenbasis {𝒙𝑘}: 

|𝝍⟩ = ∑ 𝑋𝑘|𝒙𝑘⟩

𝑀

𝑘=1

= ∑ 𝑌𝑛|𝝍𝑛⟩

𝑀

𝑛=1

       ;     𝑤ℎ𝑒𝑟𝑒       𝑌𝑛 = ∑ 𝑋𝑘⟨𝝍𝑛|𝒙𝑘⟩

𝑀

𝑘=1

=

= 𝑀−1 2⁄ ∑ 𝑋𝑘𝑒𝑥𝑝(−𝑖𝑦𝑛𝑥𝑘 − 𝑖𝜑𝑘 + 𝑖𝜑0)

𝑀

𝑘=1

        ;      {𝑦𝑛 = 𝑛 − 1} ;  𝑛 = 1,2 … 𝑀 (13)

 

Definite values of amplitudes {𝑋𝑘}, {𝑌𝑛} in (2),(13) would not exist unless measurement is 

completed. It is a fallacy to consider values of amplitudes to be unknown, rather than non-existent. 

It equates to an assumption of infamous hidden variables, with a slew of paradoxes [23, 24, 25] 

which follow any falsehood. What is viewed as the past, i.e. the pre-measurement state 𝝍, is based 

solely on information contained in post-measurement state (10). The past is inferred from the 

present, via reverse transformation 𝝍 = 𝑼†𝝍′. The “unitary evolution of quantum state”14 is 

unmitigated fallacy if referring to some physical process with continuously varying observables. 

Unitary transformation is a mathematical interpolation of otherwise indeterminate transition from 

inferred pre-measurement, to realized post-measurement device output state carrying information 

which materializes as object by observation/registration15. 

Transformation (8) applied to (1) 𝑿 → 𝑽†𝑿𝑽 sets device 𝑿 internal state to optimal 

configuration. Unitary transformation has to be generated by a device. Transformation 𝑽 is 

generated by device 𝒁: 𝑽 = 𝑒𝑥𝑝(−𝑖𝒁). I call device 𝒁 the preparation device, vs. measuring 

device 𝑿. It takes ln(𝑀2 − 𝑀)  𝑛𝑎𝑡𝑠 of information to set device (1) with given eigenvalues {𝑥𝑘} 

to optimal configuration. It takes full ln(𝑀2)  𝑛𝑎𝑡𝑠 to specify preparation device. Preparation 

device does not pass all its information to measuring device via 𝑿 → 𝑽†𝑿𝑽 unitary process. 

For 𝑀 > 2, eigenvalues {𝑧𝑘} of preparation device, generally, are not equidistant. It implies 

that setting cardinality 𝑀 > 2 measuring device to a certain configuration cannot be achieved by 

(𝑀 − 1)-qubit preparation device16 whose eigenvalues are quantized according to (12). 

 
14 The word “evolution” is loaded with falsehood in practically every scientific discipline 
15 If we want to describe what happens in an atomic event, we have to realize that the word `happens' can apply only 

to the observation, not to the state of affairs between two observations. – Heisenberg [34] 
16 To expand on this conclusion, considering cardinality 𝑀 > 2 device represents living organism [2], it means a living 

organism cannot be created from non-live matter. This is the principle of biogenesis [41], vs. archebiosis. No matter 

how much a notorious Victor.Frankenstein would try to mix various materials and subject them to all kind of 

conditions, he would not be able to create a living man, or even a single living cell.  

And God said, Let the Earth bring forth living creatures according to their kinds – Genesis 1:24 

Only the internal state of a qubit can be set using output of another qubit, as they are defined by the same number of 

parameters, as shown in Appendix D 

https://www.biblegateway.com/passage/?search=Genesis%201&version=ESV


No matter the internal state of measuring device, eigenvalues (12) are preordained. If device 

measures electron spin, it registers either 𝑥1 = +𝜋 2⁄  or 𝑥2 = −𝜋 2⁄  𝑟𝑎𝑑𝑖𝑎𝑛𝑠. If device is of 

cardinality 𝑀 = 3, it registers {𝑥𝑘} = (+2𝜋 3⁄ , 0, −2𝜋 3⁄ ) 𝑟𝑎𝑑𝑖𝑎𝑛𝑠, the sum of commuting 

measurements of isospin {𝐼3}𝑘 = (+1 2⁄ , −1 2,0⁄ ), and hypercharge {𝛶}𝑘 = (1 3⁄ , 1 3⁄ , − 2 3⁄ ):  

{𝑥𝑘} = 𝜋(𝛶 + 2 𝐼3 3⁄ ). In isolated, i.e. optimal, measurement, the probabilities {𝑃𝑘} of 

measurement outcomes are fixed at 𝑃𝑘 = 1 𝑀⁄  ∀𝑘, as mandated by equations (11). Yet in real-

life experiments 0 ≤ 𝑃𝑘 ≤ 1. It is because real-life situations involve participation by an 

observer/registrar. 

Appendix C shows that involvement of registrar in the measurement leads to: 

1. reduction of device output state (2) 

2. decrease in amount of information in device output 

3. variation in probabilities {𝑃𝑘} 

4. variation in expectation value, aligned with variation in probabilities {𝑃𝑘} 

- all manifested by expressions (𝐶4)-(𝐶6) in Appendix C. 

These conclusions continue to evade physicists, as considerable efforts are being made with 

multitude of experiments [26] on confirming what should have been by now mundane textbook 

knowledge. 

  



Appendix A 

A number of no-go theorems stipulate an arbitrary quantum state cannot be cloned [27], deleted 

[28], teleported [29], broadcast [30], hidden [31], communicated [32], or signaled [33] via 

quantum channel, i.e., via unitary transformation. A deeper look reveals these theorems reduce to 

the same disposition: apart from trivial case, the underlying process would increase17 the amount 

of information, signifying a completed measurement. Yet unitarity ought to conserve information. 

It makes the mentioned no-go theorems rather self-evident. To add to the no-go list, here is the 

“no-external entity” theorem. It obviates common, among dogmatic realists3, belief that measuring 

device retrieves information about entity, external to the device. 

Let 𝒙 be the initial state of measuring device 𝑿, and 𝒔 the initial state of an external entity 

device is to measure. As expected, before measurement, the separable initial state |𝝍0⟩ = |𝒙, 𝒔⟩ 

contains no information, since states 𝒙 and 𝒔 are unknown, i.e., not expressed via bits of classical 

information: amplitudes, phases. 

In “external entity” paradigm, measurement involves interaction between measuring device 

and external entity. Interaction effectuates global, i.e., involving both the device and entity, 

transformation from initial 𝝍0 to entangled interaction state 

 |𝝍⟩ = 𝛼|𝒙1, 𝒔1⟩ + 𝛽|𝒙2, 𝒔2⟩ (𝐴1) 

, with standard normalization18: 

𝛼𝛼† + 𝛽𝛽† = 1  ;   ⟨𝒙1|𝒙1⟩ = 1   ;   ⟨𝒙2|𝒙2⟩ = 1   ;    ⟨𝒔1|𝒔1⟩ = 1    ;     ⟨𝒔2|𝒔2⟩ = 1 

The above corresponds to the simplest case of measurement in cardinality 𝑀 = 2 basis, with 

device represented by operator 𝑿 = 𝑥1|𝒙1⟩⟨𝒙1| + 𝑥2|𝒙2⟩⟨𝒙2|. Here 𝒙1, 𝒙2 are orthogonal 

⟨𝒙1|𝒙2⟩ = 0 device eigenstates, marked by eigenvalues 𝑥1, 𝑥2; |𝒙1, 𝒔1⟩ and |𝒙2, 𝒔2⟩ are orthogonal 

states in device + entity Hilbert space. The expression (𝐴1) indicates the measurement outcome 

𝒙1 correlates with state 𝒔1 of insinuated external entity, and outcome 𝒙2 correlates with state 𝒔2.  

The expectation value of the measurement by device 𝑿 is: 

⟨𝝍|𝑿|𝝍⟩ = |𝛼|2⟨𝒙1|𝑿|𝒙1⟩ + |𝛽|2⟨𝒙2|𝑿|𝒙2⟩ =  𝑃𝑎𝑥1 + 𝑃𝑏𝑥2 (𝐴2) 

, where 𝑃𝑎 = |𝛼|2 ; 𝑃𝑏 = |𝛽|2; with amount of information (4) in device output: 

𝐻𝐴 = −𝑃𝑎 ln(𝑃𝑎) − 𝑃𝑏 ln(𝑃𝑏)  

Even though measurement by device 𝑿 implicitly includes measurement on external entity 

[34], the output of measurement on external entity is not converted into classical information. 

Device 𝑿 does not detect entity. To measure “external” entity, one has to use global device: 

𝑮 = 𝑥1|𝒙1, 𝒆1⟩⟨𝒙1, 𝒆1| + 𝑥2|𝒙1, 𝒆2⟩⟨𝒙1, 𝒆2| + 𝑥3|𝒙2, 𝒆1⟩⟨𝒙2, 𝒆1| + 𝑥4|𝒙2, 𝒆2⟩⟨𝒙2, 𝒆2| (𝐴3) 

, where 𝒆1, 𝒆2 is measurement basis in entity’s Hilbert space. 

 
17 Which would also forbid deletion process, in manifestation of the second law of thermodynamics 
18 Scalar product ⟨𝝍1|𝝍2⟩ is the correlation coefficient between two measurement outputs. The self-correlation 

coefficient ⟨𝝍|𝝍⟩ is always 1, thus providing underlying reason for normalization of quantum state to 1 



The amount of information in device 𝑮 output state (𝐴1) includes, in the last two terms, the 

weighted sum of information carried by entity states 𝒔1, 𝒔2:  

𝐻𝐴 = −𝑃𝑎 ln(𝑃𝑎) − 𝑃𝑏 ln(𝑃𝑏)

−𝑃𝑎(|⟨𝒔1|𝒆1⟩|2 ln(|⟨𝒔1|𝒆1⟩|2) + |⟨𝒔1|𝒆2⟩|2 ln(|⟨𝒔1|𝒆2⟩|2))

−𝑃𝑏(|⟨𝒔2|𝒆1⟩|2 ln(|⟨𝒔2|𝒆1⟩|2) + |⟨𝒔2|𝒆2⟩|2 ln(|⟨𝒔2|𝒆2⟩|2))

 

Unlike (𝐴2), measurement by device 𝑮 detects entity, which also shows in expectation value: 

⟨𝝍|𝑮|𝝍⟩ = 𝑃𝑎(𝑥1|⟨𝒔1|𝒆1⟩|2 + 𝑥2|⟨𝒔1|𝒆2⟩|2) + 𝑃𝑏(𝑥3|⟨𝒔2|𝒆1⟩|2 + 𝑥4|⟨𝒔2|𝒆2⟩|2)  

Since entity measurement basis 𝒆1, 𝒆2 is part of device (𝐴3) operator, the entity is part of 𝑮, not 

something external to the device. The conclusion is, if device is to detect a thing, the thing has to 

be part of the device, not an external entity. Therefore, any boundary between measuring device 

and measured entity is arbitrary and superfluous. It was noted by Heisenberg [35]: 

It has been said that we always start with a division of the world into an object, which we 

are going to study, and the rest of the world, and that this division is to some extent arbitrary. 

It should indeed not make any difference in the final result if we, e.g., add some part of the 

measuring device or the whole device to the object and apply the laws of quantum theory to 

this more complicated object. It can be shown that such an alteration of the theoretical 

treatment would not alter the predictions concerning a given experiment. 

This conclusion may seem counter-intuitive, as everyone is used to thinking that measuring 

device measures something external to the device. For example, voltmeter measures voltage in 

electric outlet. Yet setting up voltmeter, a circuit, and other preparations prior to measurement, 

amount to creation of device 𝑮, with no-information initial state 𝝍0 of device output interface. 

Once the voltmeter is connected to the circuit, it is impossible to draw the boundary between 

voltmeter and the circuit it is measuring, as they effectively merge into one device. 

One can contemplate a voltmeter which is separated into two parts by wireless connection over 

arbitrary distance, with no change to its functionality. Then, instead of voltmeter, call it a photon 

detector. It shows there is only one entity, besides observer, involved in extraction of classical 

information: the measuring device. In case of voltmeter, it encompasses the whole circuit. In case 

of photon detector, it includes the photon source. There are no measured “systems” or “objects”. 

The classical information extracted from output of measuring device is the object. This realization 

had escaped many renown physicists, who dwell in dogma about objects existing “out there”, 

independent of and outside of measurement, and possessing some “pre-existing properties”, i.e. 

hidden variables. As exemplified by the quote from [36]: 

It would seem that the [QM] theory is exclusively concerned about results of measurement, 

and has nothing to say about anything else. … When it is said that something is measured it is 

difficult not to think of the result as referring to some pre-existing property of the object in question. 

 

 

 



The generator of unitary transformation 𝑼, interpolating transition from initial no-information 

state |𝝍0⟩ = |𝒙, 𝒔⟩ to information-carrying interaction state (𝐴1) is the measuring device itself. If 

device is 𝑿, then: 

𝝍 = 𝑼𝝍0 = 𝛼|𝒙1, 𝒔1⟩ + 𝛽|𝒙2, 𝒔2⟩  

, where: 

𝑼 = 𝑒𝑥𝑝(𝑖𝑿) = 𝑒𝑥𝑝(𝑖𝑥1)|𝒙1⟩⟨𝒙1| + 𝑒𝑥𝑝(𝑖𝑥2)|𝒙2⟩⟨𝒙2| 

𝛼 = ⟨𝒙1|𝒙⟩  ;   𝛽 = ⟨𝒙2|𝒙⟩  ;    |𝒔1⟩ = 𝑒𝑥𝑝(𝑖𝑥1)|𝒔⟩  ;  |𝒔2⟩ = 𝑒𝑥𝑝(𝑖𝑥2)|𝒔⟩ 

As above shows, the entity states 𝒔1, 𝒔2 are not distinguishable by device 𝑿, i.e., ⟨𝒔2|𝒔1⟩ ≠ 0. 

 

If measuring device is 𝑮 (𝐴3), then: 

𝝍 = 𝑼𝝍0 = 𝛼|𝒙1, 𝒔1⟩ + 𝛽|𝒙2, 𝒔2⟩  

, where: 

𝑼 = 𝑒𝑥𝑝(𝑖𝑮) =

𝑒𝑥𝑝(𝑖𝑥1)|𝒙1, 𝒆1⟩⟨𝒙1, 𝒆1| + 𝑒𝑥𝑝(𝑖𝑥2)|𝒙1, 𝒆2⟩⟨𝒙1, 𝒆2| +

𝑒𝑥𝑝(𝑖𝑥3)|𝒙2, 𝒆1⟩⟨𝒙2, 𝒆1| + 𝑒𝑥𝑝(𝑖𝑥4)|𝒙2, 𝒆2⟩⟨𝒙2, 𝒆2|

 

𝛼 = ⟨𝒙1|𝒙⟩  ;   𝛽 = ⟨𝒙2|𝒙⟩

|𝒔1⟩ = 𝑒𝑥𝑝(𝑖𝑥1)|𝒆1⟩⟨𝒆1|𝒔⟩ + 𝑒𝑥𝑝(𝑖𝑥2)|𝒆2⟩⟨𝒆2|𝒔⟩

|𝒔2⟩ = 𝑒𝑥𝑝(𝑖𝑥3)|𝒆1⟩⟨𝒆1|𝒔⟩ + 𝑒𝑥𝑝(𝑖𝑥4)|𝒆2⟩⟨𝒆2|𝒔⟩
 

 

The entity states 𝒔1, 𝒔2 are distinguishable by device 𝑮 with appropriate choice of measurement 

basis 𝒆1, 𝒆2 and device eigenvalues 𝑥1, 𝑥2, 𝑥3, 𝑥4, so that ⟨𝒔2|𝒔1⟩ = 𝑒𝑥𝑝(𝑖𝑥1 − 𝑖𝑥3)|⟨𝒆1|𝒔⟩|2 +

𝑒𝑥𝑝(𝑖𝑥2 − 𝑖𝑥4)|⟨𝒆2|𝒔⟩|2 = 0. 

Since 𝑮 is the generator of 𝑼, they commute. The expectation value does not change upon 

transformation 𝑼, i.e., measurement does not lead to observable wave function “collapse”: 

⟨𝝍|𝑮|𝝍⟩ = ⟨𝝍0|𝑮|𝝍0⟩ =

(𝑃𝑎𝑥1 + 𝑃𝑏𝑥3)|⟨𝒔|𝒆𝟏⟩|2 + (𝑃𝑎𝑥2 + 𝑃𝑏𝑥4)|⟨𝒔|𝒆𝟐⟩|2   



Appendix B 

The relation of quantum state (2) to event sample {𝑛𝑘}, i.e. to so-called quantum ensemble, is 

manifested by formula (4) for the amount of information carried by quantum state (2), where set 

of phases {𝜑𝑘} corresponds to a certain correlation of events in {𝑛𝑘} sample. 

For event sample with population numbers {𝑛𝑘}, the number of ways to correlate 𝑁 events, is 

Ω, given by (3). Hence, Ω should be the number of distinct combinations of phases {𝜑𝑘} in (2). 

The number Ω1 of possible ways to correlate 𝑛1 indistinguishable events having outcome 𝒙1, 

with the rest of 𝑁 − 𝑛1 events, out of a sample of 𝑁 events is: 

Ω1 =
𝑁!

𝑛1! ∙ (𝑁 − 𝑛1)!
 

Phase 𝜑1 of amplitude 𝑋1 in (2) acquires one of Ω1 distinct values quantized by 2𝜋 Ω1⁄  over 

[−𝜋, 𝜋] domain:        𝜑1 = −𝜋(Ω1 − 1) Ω1⁄ , −𝜋(Ω1 − 3) Ω1⁄ , … , 𝜋(Ω1 − 1) Ω1⁄  

 

With the given correlation of 𝑛1 event 𝒙1 outcomes, there are 

                                   Ω2 =
(𝑁 − 𝑛1)!

𝑛2! ∙ (𝑁 − 𝑛1 − 𝑛2)!
 

possible ways to correlate 𝑛2 events having outcome 𝒙2, with the rest of 𝑁 − 𝑛1 − 𝑛2 events. It 

results in phase 𝜑2 taking one of Ω2 distinct values: 

𝜑2 = −𝜋(Ω2 − 1) Ω2⁄ , −𝜋(Ω2 − 3) Ω2⁄ , … , 𝜋(Ω2 − 1) Ω2⁄  

 

One step further: 

Ω3 =
(𝑁 − 𝑛1 − 𝑛2)!

𝑛3! ∙ (𝑁 − 𝑛1 − 𝑛2 − 𝑛3)!
 

𝜑3 = −𝜋(Ω3 − 1) Ω3⁄ , −𝜋(Ω3 − 3) Ω3⁄ , … , 𝜋(Ω3 − 1) Ω3⁄  

Continuing with this logic for the rest of {𝜑𝑘}, I end up with: Ω𝑀 = 1; 𝜑𝑀 = 0. It means the global 

phase has been eliminated from {𝜑𝑘}, leaving 𝜑𝑀 as the reference phase with respect to which 

other {𝜑𝑘} are defined, and 𝒙𝑀 as the reference outcome with respect to which the correlation is 

defined for other {𝒙𝑘}. As expected, the number of distinct combinations of phases {𝜑𝑘} is (3): 

∏ Ω𝑘 =

𝑀

𝑘=1

𝑁!

∏ 𝑛𝑘!𝑀
𝑘=1

= Ω 

For absolute values of amplitudes {𝑋𝑘} in (2), it begs for the conjecture: |𝑋𝑘| = √𝑛𝑘 𝑁⁄ , satisfying 

|𝑋𝑘|2 = 𝑃𝑘 limit when 𝑁 → ∞. 

I have thus provided the likely scheme of how quantum ensemble of {𝑛𝑘} event outcomes 

having certain event correlation translates into expression (2) for quantum state.  



Appendix C 

Output state (2) of measuring device transforms under 𝑆𝑈(𝑀) group, in effectuated by 

measurement transition 𝝍 → (𝝍′ = 𝑼𝝍). To appear as 3𝐷 object of observation, the extracted 

information has to embody an entity which collectively transforms under 𝑆𝑈(2) group, 

homomorphic to 𝑆𝑂(3) transformations in observation space [38]. Such entity is multi-qubit [2]. 

It materializes by correlation with output states of measuring device: 

|𝝌⟩ = ∑ 𝐶𝑛|𝝍𝑛⟩|𝒒𝑛⟩

𝑀

𝑛=1

(𝐶1) 

, where {𝒒𝑛} are multi-qubit states; {𝝍𝑛} is device state basis (9), {𝐶𝑛} are amplitudes of 

decomposition of device output in state basis. Multi-qubit states {𝒒𝑛} are the states of observer 

sensory organs, which object of observation projects onto. States {𝒒𝑛} are normalized, but not 

necessarily orthogonal:  ⟨𝒒𝑛|𝒒𝑛⟩ = 1;  |⟨𝒒𝑚|𝒒𝑛⟩| ≥ 0. 

The above disposition facilitates answering old question: is there a boundary between 

measuring device and observer? The question, as put forward by John von Neumann [17]: 

That is, we are obliged always to divide the world into two parts, the one being the observed 

system, the other the observer. In the former we can follow all physical processes (in principle at 

least) arbitrarily precisely. In the latter, this is meaningless. The boundary between the two is 

arbitrary to a very large extent. […] That this boundary can be pushed arbitrarily far into the interior 

of the body of the actual observer is the content of the principle of psycho-physical parallelism. But 

this does not change the fact that in every account the boundary must be put somewhere if the 

principle is not to be rendered vacuous; i.e., if a comparison with experience is to be possible. 

The presented here and elsewhere [13, 2] arguments provide the answer: the boundary between 

observer and measuring device is at the device output interface, which converts device output into 

classical information by correlation with the states {𝒒𝑛} of observer receptors. The actual location 

of this boundary may well be inside the body of observer, e.g., at the eye retina, skin, or other 

sensory organ whose state can be described in terms of classical information. In this context, any 

multi-qubit device having its states correlated (𝐶1) with output states of measuring device, would 

qualify as observer. The registrar could be the right term to use. 

Appendix A demonstrates how entangled state arises as output of a measurement by global 

device. Any entangled state is the output state of a global device. 

As was pointed out in [37], the information extracted by one party in entanglement is not shared 

with other parties (no-communication [32]). The effect of measurement by a party is the reduction 

of shared state. The act of measurement traces out measuring device from shared state (𝐶1): 

𝝆𝑞 = 𝑇𝑟𝑋(|𝝌⟩⟨𝝌|) = ∑ 𝐶𝑛𝐶𝑛
†|𝒒𝑛⟩⟨𝒒𝑛|

𝑀

𝑛=1

(𝐶2) 

The reduced state (𝐶2) is the state of observer receptors. From the point of view of observer, it is 

the object of observation, a multi-qubit, which collectively transforms under a rep of 𝑆𝑈(2). 



Another way to see this, is through measurement-effectuated transition 𝝌 → (𝝌′ = 𝑼𝜓𝝌), 

where 𝑼𝜓 = 𝑽†𝑼𝑥𝑽 and 𝑼𝑥 = 𝑒𝑥𝑝(𝑖𝑿), with 𝑿 and 𝑽 given by (1) and (8). 𝑼𝜓 is a permutation 

matrix between {𝝍𝑛} basis states, satisfying 𝑑𝑒𝑡(𝑼𝜓) = 1: 

𝑼𝜓|
𝑀=2

= (
0 −1
1 0

) ;    𝑼𝜓|
𝑀=3

= (
0 0 1
1 0 0
0 1 0

) ;    𝑼𝜓|
𝑀=4

= (

0
1
0
0

0
0
1
0

0
0
0
1

−1
0
0
0

)  

Due to the same set of eigenvalues (12), transformation 𝑼𝜓 is unitarily equivalent to 𝑠𝑝𝑖𝑛 −

(𝑀 − 1) 2⁄  transformation of the fully symmetric state of (𝑀 − 1)-qubit [2]. 

The act of observation, tracing out observer from (𝐶1), reduces shared state (𝐶1) to state 𝝆𝑥, 

unitarily equivalent to (𝐶2): 

𝝆𝑥 = 𝑇𝑟𝑞(|𝝌⟩⟨𝝌|) = ∑ 𝐶𝑛𝐶𝑚
† ⟨𝒒𝑚|𝒒𝑛⟩|𝝍𝑛⟩⟨𝝍𝑚|

𝑀

𝑛,𝑚=1

(𝐶3) 

With registrar involvement, the probabilities of measurement outcomes by device (1) are: 

𝑃𝑘 = ⟨𝒙𝑘|𝝌⟩⟨𝝌|𝒙𝑘⟩ = ⟨𝒙𝑘|𝝆𝑥|𝒙𝑘⟩ =
1

𝑀
∑ 𝐶𝑛𝐶𝑚

† ⟨𝒒𝑚|𝒒𝑛⟩𝑒𝑥𝑝(𝑖(𝑦𝑛 − 𝑦𝑚)𝑥𝑘)

𝑀

𝑛,𝑚=1

(𝐶4) 

The expectation value of the measurement by device (1) is: 

⟨𝝌|𝑿|𝝌⟩ = 𝑇𝑟(𝑿𝝆𝑥) =
1

𝑀
∑ 𝐶𝑛𝐶𝑚

† ⟨𝒒𝑚|𝒒𝑛⟩ ∑ 𝑥𝑘𝑒𝑥𝑝(𝑖(𝑦𝑛 − 𝑦𝑚)𝑥𝑘)

𝑀

𝑘=1

𝑀

𝑛,𝑚=1

(𝐶5) 

The amount of extracted information 𝐻𝑁 = −𝑇𝑟(𝝆𝑥 ln 𝝆𝑥) = −𝑇𝑟(𝝆𝑞 ln 𝝆𝑞). Information 𝐻𝐴 in 

device output is: 

𝐻𝐴 = 𝐻𝑆 − 𝐻𝑁 = 𝑇𝑟(𝝆𝑥 ln 𝝆𝑥) − ∑|𝐶𝑛|2 ln|𝐶𝑛|2

𝑀

𝑛=1

   𝑛𝑎𝑡𝑠 (𝐶6) 

The quantities (𝐶4)-(𝐶6) exhibit dependence on observer receptors via factors ⟨𝒒𝑚|𝒒𝑛⟩. The 

dependency of (𝐶4)-(𝐶6) on observer does not violate objectivity19, because values ⟨𝒒𝑚|𝒒𝑛⟩ are 

invariant of observer basis. 

The non-equal probabilities (𝐶4) of measurement outcomes, and the decrease in information 

(𝐶6) in device output, are due to registrar involvement. The information 𝐻𝐴 in output of 

measurement device, and information 𝐻𝑁 recorded by the registrar are two complementary [5] 

quantities. It underscores the participatory nature of physical phenomena. 

  

 
19 Objectivity is defined as independence of extracted information (objective facts) on observer [basis] [38] 



Appendix D 

Unlike cardinality 𝑀 > 2 device, the classical information in output of a qubit uniquely 

identifies its internal state. If we know |𝝍1⟩ = 𝛼|𝒙1⟩ + 𝛽|𝒙2⟩, with 𝛼 = ⟨𝒙1|𝝍1⟩,  𝛽 = ⟨𝒙2|𝝍1⟩, 

we also know output state |𝝍2⟩ = 𝛽†|𝒙1⟩ − 𝛼†|𝒙2⟩, orthogonal to 𝝍1:  ⟨𝝍2|𝝍1⟩ = 0. Thus, we 

have a complete state basis {𝝍𝑛} in qubit Hilbert space. 

The qubit operator in its own eigenbasis is 𝑿 = 𝑥1|𝒙1⟩⟨𝒙1| + 𝑥2|𝒙2⟩⟨𝒙2|. The qubit operator 

in state basis is 𝑽†𝑿𝑽, where: 

𝑽 = (
𝛼 𝛽†

𝛽 −𝛼†) = 𝛼|𝒙1⟩⟨𝝍1| + 𝛽†|𝒙1⟩⟨𝝍2| + 𝛽|𝒙2⟩⟨𝝍1| − 𝛼†|𝒙2⟩⟨𝝍2| 

 

𝑽† = |
𝛼† 𝛽†

𝛽 −𝛼
| = 𝛼†|𝝍1⟩⟨𝒙1| + 𝛽†|𝝍1⟩⟨𝒙2| + 𝛽|𝝍2⟩⟨𝒙1| − 𝛼|𝝍2⟩⟨𝒙2| 

 

From above, the qubit operator in state basis, which represents qubit internal state, is: 

𝑽†𝑿𝑽 = (
|𝛼|2𝑥1 + |𝛽|2𝑥2 𝛼†𝛽†(𝑥1 − 𝑥2)

𝛼𝛽(𝑥1 − 𝑥2) |𝛼|2𝑥2 + |𝛽|2𝑥1

) (𝐷1) 

Determining device internal state from device output is only possible for cardinality 𝑀 = 2 

device, i.e., qubit. For cardinality 𝑀 > 2 devices, the output state would not contain enough 

information to uniquely identify device configuration. Measurement cannot extract all information 

from 𝑀 > 2 device. This fact prompted me to associate 𝑀 > 2 devices with living organisms [2]. 

As emphasized by N. Bohr [39], a complete measurement of living organism is incompatible 

with the state of living. Upon such measurement the amount of information in device output would 

equal the amount of information in device internal state, signifying it is not a live matter.  
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