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Abstract 
I propose a model wherein a system is represented by a finite sequence 

of natural numbers. These numbers are thought of as population numbers in 

statistical ensemble formed as a sample with replacement of entities (microstates) 

from some abstract set. I derive the concepts of energy and of temperature. I show 

the analogy between energy spectra computed from the model and energy spectra 

of some known constructs, such as particle in a box and quantum harmonic 

oscillator. The presented model replaces the concept of wave function with 

knowledge vector. I derive Schrödinger-type equation for knowledge vector and 

discuss principal differences with Schrödinger’s equation. The model retains 

major QM hallmarks such as wave-particle duality, violation of Bell’s 

inequalities, quantum Zeno effect, while avoiding controversial concept of wave 

function collapse. Unlike QM and Newtonian mechanics the presented model has 

the Second Law of Thermodynamics built-in; in particular, it is not invariant with 

respect to time reversal. 
 

 As for prophecies, they will pass away; as for tongues, 

they will cease; as for knowledge, it will pass away. 

1 Corinthians 13:8 

 

1. PREAMBLE 

Physical properties, such as temperature, energy, entropy, pressure, and phenomena such 

as Bose-Einstein condensation (BEC) are exhibited not just by “real” physical systems, but also 

by virtual entities such as binary or character strings (Wislicki, 1990; Frenzen, 1993; Viznyuk, 

2010), world wide web (Albert & Barabási, 2002), business and citation networks (Bianconi & 

Barabási, 2000; Barabási & Bonabeau, 2003), economy (Bouchaud, 2000; Garrett, 2013; 

Sieniutycz & Salamon, 1990). There must be an underlying mechanism which accounts for the 

grand commonality in observed behavior of vastly different entities. Quoting (Barabási & 

Bonabeau, 2003): Scientists have recently discovered that various complex systems have an 

underlying architecture governed by shared organizing principles. Earlier it was argued that 

present-day quantum mechanics is a limiting case of some more unified scheme… Such a theory 

would have to provide, as an appropriate limit, something equivalent to a unitarily evolving state 

vector |𝜓⟩ (Penrose, 1996). 

There are two factors present in all theories. One is the all-pervading time, and the other is 

the observer’s mind. A successful grand commonality model must explain the nature of time, 

specify mechanism of how the physical reality projects onto the mind of observer, and relate time 

to that projection. 

 I strive to provide definition for every notion I use. I call physical reality (i.e. the “real” 

world) the underlying system. The underlying system is represented by its state vector 𝒙. 

Observer’s mind is the basis. Observables are the basis vectors. Knowledge vector 𝒚 is the state 

vector 𝒙 represented in the basis. The concept of knowledge vector may seem similar to wave 

function in Niels Bohr interpretation according to which the wave function is not to be taken 

https://www.biblegateway.com/passage/?search=1%20Corinthians+13:8&version=ESV


 

 

seriously as describing a quantum-level physical reality, but is to be regarded as merely referring 

to our (maximal) “knowledge” of a physical system… (Penrose, 1996). 

The state vector has an associated value of proper time (Viznyuk, 2011) which serves as 

an ordering parameter for different states of underlying system. State vector is completely defined 

by a finite sequence of natural numbers (𝑛𝑖). I call (𝑛𝑖) the population numbers of microstates {𝒊} 
from set 𝑮; {𝒊} ∈𝑮. I do not speculate what is microstate or set 𝑮, leaving them as abstract notions. 

I think of sequence (𝑛𝑖) as a sample with replacement of microstates {𝒊} from set 𝑮. I call such 

sample the statistical ensemble. Henceforth the notion of physical reality is reduced to a sequence 

of natural numbers (𝑛𝑖) which do not have to be physicalized in any way. 

The proper time has been previously defined (Viznyuk, 2011) as the ordering parameter 

for the states of statistical ensemble: 
𝑡=ln𝑁 , where 𝑁=∑ 𝑛𝑖 

𝑖∈𝑮

 (1) 

The proper time is quantized with time quantum 𝜏=∆(ln𝑁)=1/𝑁. I combine this definition of 

time with the following rule on time increments: 

The positive ∆𝑡>0 direction of time change is when: 

 

, where all ∆𝑛𝑖 are non-negative.  

∆𝑁=∆𝑁|∆𝑡>0≡ ∑ ∆𝑛𝑖
∆𝑛𝑖>0

 
(2) 

The negative ∆𝑡<0 direction of time change is when: 

 

, where all ∆𝑛𝑖 are non-positive. 

∆𝑁=∆𝑁|∆𝑡<0≡ ∑ ∆𝑛𝑖
∆𝑛𝑖<0

 (3) 

If (𝑛𝑖) and (𝑛𝑖
′) are such that some ∆𝑛𝑖=𝑛𝑖

′−𝑛𝑖 are positive and some are negative, then state 

vectors (𝑛𝑖) and (𝑛𝑖
′) do not connect by timeline. There can be multiple timelines (histories) 

connecting two state vectors, as well as none. For the given state vector, a choice of observation 

basis defines knowledge vector.  

In QM a common approach is to apply Schrödinger’s equation in forward-only manner, to 

find conditional probabilities of future measurement outcomes [eq. (107,109) in Section 4]. What 

happens if same equation is solved backward in time starting with the present known state? If we 

do, we would find the past too is only defined in terms of conditional probabilities. 

In my model any known fact from the past is an artifact of the present state. What observer 

thinks as the past, the present, or the future are represented by the knowledge vector in the present. 

Thus, there is only present. 

To further develop the model, I derive the notions of energy and of temperature. I derive 

the equation of motion for knowledge vector and discuss its similarity and differences with 

Schrödinger equation. I touch upon the notions of ergodicity; open/closed systems; conservation 

of energy; Bell’s inequalities; Haag’s theorem; quantum Zeno effect; and the notion of memory. 

 

2. ENERGY 

The base tenet of the model is that the combination (𝑛𝑖∈𝑮) completely defines the 

underlying system. I call (𝑛𝑖) combination a mode. Since mode is formed as a sample with 

replacement, the [unconditional] probability of finding underlying system in a particular mode is 

given by multinomial probability mass function: 

𝑃((𝑛𝑖); 𝑁,(𝑝𝑖))=𝑁!∏
𝑝𝑖
𝑛𝑖

𝑛𝑖!
𝑖∈𝑮

 (4) 

, where 𝑝𝑖 is the probability of sampling microstate 𝒊 from set 𝑮. Within the context of the model  



 

 

𝑝𝑖=
1

𝑀
    ∀  𝒊∈𝑮 (5) 

, where 𝑀 is the cardinality of set 𝑮. I introduce functions ℰ,𝜇,𝜒 as follows: 

ln𝑃((𝑛𝑖); 𝑁,(𝑝𝑖))=𝜇(𝑁,(𝑝𝑖))−ℰ((𝑛𝑖); 𝑁,(𝑝𝑖)) (6) 

𝜇(𝑁,(𝑝𝑖))=ln𝑃((𝑛𝑖≡𝑁∙𝑝𝑖); 𝑁,(𝑝𝑖))=lnΓ(𝑁+1)−𝜒(𝑁,(𝑝𝑖)) (7) 

𝜒(𝑁,(𝑝𝑖))=∑ [lnΓ(𝑁𝑝𝑖+1)−𝑁𝑝𝑖ln𝑝𝑖]

𝑖∈𝑮

 (8) 

ℰ((𝑛𝑖); 𝑁,(𝑝𝑖))=𝜇(𝑁,(𝑝𝑖))−ln𝑃((𝑛𝑖); 𝑁,(𝑝𝑖))= 

∑ [ln
Γ(𝑛𝑖+1)

Γ(𝑁𝑝𝑖+1)
+(𝑁𝑝𝑖−𝑛𝑖)∙ln𝑝𝑖]

𝑖∈𝑮

 
(9) 

ℰ((𝑛𝑖); 𝑁,(𝑝𝑖))≥0;       ℰ((𝑛𝑖=𝑁𝑝𝑖 ∀  𝒊∈𝑮); 𝑁,(𝑝𝑖))=0 (10) 

, where Γ(𝑥) is gamma function. With (7-9), I rewrite (4) as 

𝑃((𝑛𝑖); 𝑁,(𝑝𝑖))=𝑒𝑥𝑝(𝜇(𝑁,(𝑝𝑖))−ℰ((𝑛𝑖);𝑁,(𝑝𝑖))) (11) 

From (11) the probability of observing statistical ensemble of N microstates in a particular mode 

is determined solely by the value of ℰ((𝑛𝑖);𝑁,(𝑝𝑖)). If I’m to use ℰ as a single independent 

variable, I can write the probability mass function in ℰ domain as: 

𝑃(ℰ;𝑁,(𝑝𝑖))=𝑔(ℰ;𝑁,(𝑝𝑖))∙𝑒𝑥𝑝(𝜇(𝑁,(𝑝𝑖))−ℰ) (12) 

Here 𝑔(ℰ;𝑁,(𝑝𝑖)) is the multiplicity (degeneracy) of the given ℰ value1, i.e. a number of ways 

the same value of ℰ is realized by different modes with given parameters 𝑁,(𝑝𝑖). There is no 

analytic expression for 𝑔(ℰ;𝑁,(𝑝𝑖)), however, it is numerically computable. Table 1 contains ℰ, 

𝑔(ℰ;𝑁,(𝑝𝑖)) values calculated for several sets of parameters 𝑁,(𝑝𝑖). Figures 1-2 show distinct 

values of ℰ in increasing order for several values of parameter 𝑁 and probabilities (5) calculated 

from (9), using (Yamanaka, Kawano, & Y., 2007) algorithm for finding partitions (𝑛𝑖) of integer 

𝑁 into ≤𝑀 parts (Viznyuk, OEIS sequence A210237, 2012). The sum of 𝑔(ℰ;𝑁,(𝑝𝑖)) over all 

distinct values of ℰ is the total number of modes. It is equal to the number of ways to distribute 𝑁 

indistinguishable balls into 𝑀 distinguishable cells: 

𝐿(𝑁,𝑀)=∑ 𝑔(ℰ;𝑁,(𝑝𝑖))
{ℰ}

=
(𝑁+𝑀−1)!

𝑁!(𝑀−1)!
 (13) 

, where sum is over all distinct values of ℰ. Figure 3 shows the total number 𝐿(𝑁,𝑀) of 

distinguishable states of statistical ensemble, and the total number of distinct values {ℰ} as 

functions of 𝑁 for two sets of probabilities (5), calculated from (13) and (9) using (Yamanaka, 

Kawano, & Y., 2007) algorithm. The graphs demonstrate the following: 

¶ For probabilities (5) the average degeneracy of {ℰ} levels approaches 𝑀! as 𝑁→∞. 

                                                 
1 For a case of statistical ensemble with microstate probabilities (5); the multiplicity of ℰ is the multiplicity of the 

value of multinomial coefficient in (4) (Viznyuk, OEIS sequence A210238, 2012) 



 

 

This statement can be expressed as: 
𝑀!∙lim

𝑁→∞
∑ 1
{ℰ}

=
(𝑁+𝑀−1)!

𝑁!(𝑀−1)!
 (14) 

Here ∑ 1{ℰ}  sum represents the number of distinct values of ℰ for the given parameters 𝑁,𝑀. As 

𝑔(ℰ;𝑁,(𝑝𝑖)) is not a smooth function of ℰ (see Table 1), there could be no true probability density 

in ℰ domain. However, I shall derive pseudo probability density to be used in expressions 

involving integration by ℰ in thermodynamic limit. To be able to use analytical math I have to 

extend (7-11) from discrete variables (𝑛𝑖) to continuous domain. I call 

¶ Thermodynamic limit is the approximation of large population numbers: 

𝑛𝑖≫1  ∀  𝒊∈𝑮 
(15) 

In thermodynamic limit, I shall use Stirling’s approximation for factorials 

ln𝑛!≈
1

2
ln2𝜋𝑛+𝑛ln𝑛−𝑛 (16) 

With (5) it allows rewriting of (7-9) as 

𝜇(𝑁,(𝑝𝑖))≅−
1

2
[(𝑀−1)∙ln2𝜋𝑁+ln∏ 𝑝𝑖

𝑖∈𝑮

]=𝜇(𝑁,𝑀)=
𝑀

2
ln𝑀−

𝑀−1

2
ln2𝜋𝑁 (17) 

 ℰ((𝑛𝑖); 𝑁,(𝑝𝑖))≅∑ (𝑛𝑖+
1

2
)

𝑖∈𝑮

∙ln
𝑛𝑖
𝑁𝑝𝑖
=∑ (𝑛𝑖+

1

2
)

𝑖∈𝑮

∙ln𝑛𝑖−(𝑁+
𝑀

2
)ln
𝑁

𝑀
 (18) 

Figure 4 demonstrates function 𝜇(𝑁,(𝑝𝑖)) calculated for two sets of parameters (𝑝𝑖) using exact 

expression (7) and approximate formula (17). In thermodynamic limit, ℰ is a smooth function of 
(𝑛𝑖) approximated by positive semi-definite quadratic form of {𝑛𝑖𝑁⁄ −𝑝𝑖}  in the vicinity of its 

minimum (10): 
ℇ≅∑ 𝑏𝑖,𝑗∙(

𝑛𝑖
𝑁
−𝑝𝑖)∙(

𝑛𝑗

𝑁
−𝑝𝑗)

𝒊∈𝑮
𝒋∈𝑮

 
(19) 

Knowing the covariance matrix (Forbes, Evans, Hastings, & Peacock, 2010) of multinomial 

distribution (4) allows reduction of (19) to a diagonal form. The covariance matrix, divided by 𝑁 

is: 𝜎𝑖𝑗=𝛿𝑖𝑗∙𝑝𝑗−𝑝𝑖∙𝑝𝑗 , where 𝛿𝑖=𝑗=1 ; 𝛿𝑖≠𝑗=0 (20) 

The rank of 𝜎𝑖𝑗 is 𝑀−1. If 𝑑𝑖𝑗 is a diagonal form of 𝜎𝑖𝑗, the eigenvalues of  𝜎𝑖𝑗 are 𝑑𝑖=𝑑𝑖𝑖: 

𝑑𝑖𝑗=𝑑𝑖𝑎𝑔(𝜎𝑖𝑗) ; 𝑑𝑖=𝑑𝑖𝑖 ; 𝑑1≡0 ; 𝑑𝑖>1>0 (21) 

For equal probabilities (5) 𝑑𝑖>1=1𝑀⁄ . I transform to new discrete variables: 

 
𝑥𝑖>1=∑ (

𝑛𝑗

𝑁
−𝑝𝑗)

Θ𝑗𝑖

√𝑑𝑖𝒋∈𝑮

=
√𝑀

𝑁
∑ (𝑛𝑗−

𝑁

𝑀
)∙Θ𝑗𝑖

𝒋∈𝑮

 ; 𝑥1≡0 (22) 

, where Θ𝑖𝑗 is matrix with columns as unit eigenvectors of 𝜎𝑖𝑗 corresponding to eigenvalues (21). 

The eigenvector Θ𝑖1 corresponding to eigenvalue 𝑑1≡0 is perpendicular to hyper-plane (1) 

defined by ∑ 𝑛𝑖 𝑖∈𝑮 =𝑁 in M-dimensional space of (𝑛𝑖) coordinates, while vector (𝑛𝑖𝑁⁄ −𝑝𝑖) is 

parallel to the hyper-plane. Therefore, 𝑥1≡0 in (22). Now I can rewrite (19) in terms of new  

variables (𝑥𝑖) as 
ℇ=
𝑁

2
∑ 𝑥𝑖

2

𝒊∈𝑮

 (23) 

I call (𝑥𝑖) the canonical variables of statistical ensemble, and 𝒙 a canonical state vector. I call 

parameter ℰ the energy of statistical ensemble. The canonical variables (𝑥𝑖) constitute the 

observable values in the basis of eigenvectors of 𝜎𝑖𝑗. As stated in preamble, a basis is associated 



 

 

with the given observer, therefore basis vectors may differ from eigenvectors of 𝜎𝑖𝑗. If a basis is 

obtained from eigenvectors of 𝜎𝑖𝑗 via an orthogonal transformation, the quadratic form (23) is 

preserved. Hence, I state the conservation of energy law as follows: the energy of the system is 

conserved under orthogonal transformations of the basis. In layman’s terms it means the energy 

may change from one form to another (e.g. from potential energy to kinetic) while the total energy 

of the system is conserved. The conservation of energy law in this form differs from the common 

one (Conservation of Energy, Wikipedia) which “… states that the total energy of an isolated 

system remains … conserved over time”. Time model outlined in (Viznyuk, 2011)  leads to the 

following time evolution law for (𝑥𝑖)  and ℇ in thermodynamic limit: 

 𝑥𝑖=𝑥0𝑖∙𝑒𝑥𝑝(𝑡0−𝑡) ℇ=ℇ0∙𝑒𝑥𝑝(𝑡0−𝑡) (24) 

Therefore, in presented framework, the total energy of the system is not conserved over time. 

Commonly, the exponential decay (24) has much longer characteristic timescale than orthogonal 

transformations of the observation basis, as I discuss in Section 4. Therefore, the common 

formulation of conservation of energy law holds sway in usual circumstances. 

Figure 5 demonstrates function √ℰ/𝑁 calculated for two sets of parameters (𝑝𝑖) using 

exact expression (9) and approximations (18), and (23). I plotted √ℰ/𝑁 instead of ℰ to show 

asymptotic behavior of (9) and (18) in comparison with quadratic form (23). Using (17) and (23) 

I obtain multivariate normal approximation (Forbes, Evans, Hastings, & Peacock, 2010) to 

multinomial distribution (4) as 

𝑃((𝑥𝑖); 𝑁,(𝑝𝑖))≅(2𝜋𝑁)
1−𝑀
2 ∙𝑒𝑥𝑝[−

1

2
∑ (𝑁𝑥𝑖

2+ln𝑝𝑖)

𝒊∈𝑮

]=𝑒𝑥𝑝[𝜇(𝑁,(𝑝𝑖))−
𝑁

2
∑ 𝑥𝑖

2

𝒊∈𝑮

] (25) 

Figure 6 shows graphs of ln𝑃((𝑛𝑖);𝑁,(𝑝𝑖)) as a function of 𝑛1 calculated for 𝑁=1000 and four 

sets of probabilities (𝑝𝑖), using exact formula (4), and multivariate normal approximation (25). In 

order to derive pseudo probability density in ℰ domain, I note that: 

¶ In thermodynamic limit the number 𝐿(ℰ0;𝑁,𝑀) of distinguishable states of statistical 

ensemble having ℇ≤ℰ0 is proportional to the volume of (𝑀−1) –dimensional sphere 

of radius √𝑁ℰ0. This statement can be expressed as 

(26) 

𝐿(ℰ0;𝑁,𝑀)=lim
𝑁→∞

∑ 𝑔(ℇ;𝑁,𝑀)

{ℇ}≤ℰ0

=𝑎(𝑁,𝑀)∙(𝑁ℰ0)
𝑀−1
2  (27) 

The sum in (27) is over all distinct values of ℇ which are less or equal than ℇ0. The function 

𝑎(𝑁,𝑀) is determined from normalization requirement: 

1=∑ 𝑃(ℇ;𝑁,𝑀)

{ℇ}

=∑ 𝑔(ℇ;𝑁,𝑀)

{ℇ}

∙𝑒𝑥𝑝(𝜇(𝑁,𝑀)−ℇ) (28) 

In order to convert from sums to integrals over continuous variable ℇ I define pseudo density 

𝑔(ℇ;𝑁,𝑀) of distinguishable states of statistical ensemble as 

𝑔(ℰ;𝑁,𝑀)=
𝜕

𝜕ℰ
𝐿(ℰ;𝑁,𝑀)=𝑎(𝑁,𝑀)∙

𝑀−1

2
∙𝑁
𝑀−1
2 ∙ℰ

𝑀−3
2  (29) 

The corresponding pseudo probability density 𝑃(ℰ;𝑁,𝑀) is given by (12). The normalization 

requirement for these functions becomes: 

1=∫ 𝑃(ℰ;𝑁,𝑀)𝑑ℇ
ℇ𝑚𝑎𝑥

0

=∫ 𝑔(ℇ;𝑁,𝑀)∙𝑒𝑥𝑝(𝜇(𝑁,𝑀)−ℇ)𝑑ℇ
ℇ𝑚𝑎𝑥

0

 (30) 

https://en.wikipedia.org/wiki/Energy
https://en.wikipedia.org/wiki/Isolated_system
https://en.wikipedia.org/wiki/Isolated_system


 

 

The ℇ𝑚𝑎𝑥 value is obtained from (9) by having microstate 𝒋 with lowest probability 𝑝𝑚𝑖𝑛=
min
𝒊∈𝑮
{𝑝𝑖} acquire maximum population: 𝑛𝑚𝑎𝑥=𝑁; 𝑛𝑖≠𝑗=0. From (9) as 𝑁→∞: 

ℇ𝑚𝑎𝑥((𝑛𝑖); 𝑁,(𝑝𝑖))≅−𝑁∙ln𝑝𝑚𝑖𝑛 (31) 

For probabilities (5): 

ℇ𝑚𝑎𝑥((𝑛𝑖); 𝑁,𝑀)≅𝑁∙ln𝑀 (32) 

From (31) ℇ𝑚𝑎𝑥→∞ as 𝑁→∞. That allows replacing ℇ𝑚𝑎𝑥 in the upper limit of integral in (30) 

with ∞. I get (Forbes, Evans, Hastings, & Peacock, 2010) the expression for function 𝑎(𝑁,𝑀) in 

(27) as: 

𝑎(𝑁,𝑀)=[𝑒𝜇(𝑁,𝑀)∙𝑁
𝑀−1
2 ∙∫ ℇ

𝑀−1
2 𝑒−ℇ𝑑ℇ

∞

0

]

−1

=
𝑒−𝜇(𝑁,𝑀)

𝑁
𝑀−1
2 Γ(

𝑀+1
2 )

 (33) 

Using (33) and (17) allows rewriting (27) as 

𝐿(ℰ;𝑁,𝑀)=
ℇ
𝑀−1
2

Γ(
𝑀+1
2 )

𝑒−𝜇(𝑁,𝑀)=
(2𝜋𝑁ℰ)

𝑀−1
2

𝑀
𝑀
2∙Γ(

𝑀+1
2 )

=
1

√2
(
2

𝑀
)

𝑀
2
∙𝑉(√𝑁ℰ;𝑀−1) (34) 

, where 𝑉(√𝑁ℰ;𝑀−1)=
(𝜋𝑁ℰ)

𝑀−1
2

Γ(
𝑀+1
2 )

 
is the volume of (𝑀−1) –dimensional 

sphere of radius √𝑁ℰ. 

The number 𝑛(ℰ) of distinct values of ℰ in 𝑁→∞ limit can be estimated from (34) and (14) as 

𝑛(ℰ)=
𝐿(ℰ;𝑁,𝑀)

𝑀!
=

(2𝜋𝑁ℰ)
𝑀−1
2

𝑀
𝑀
2∙Γ(

𝑀+1
2 )Γ(𝑀+1)

 (35) 

From (35) one can approximately enumerate distinct energy levels ℰ𝑛 by “quantum number” 𝑛: 

ℰ𝑛=[Γ(
𝑀+1

2
)Γ(𝑀+1)𝑒𝜇(𝑁,𝑀)∙𝑛]

2
𝑀−1
=
𝑀

2𝜋𝑁
[Γ(
𝑀+1

2
)Γ(𝑀+1)𝑀

1
2∙𝑛]

2
𝑀−1

 (36) 

From (29) the pseudo density 𝑔(ℇ;𝑁,𝑀) of distinguishable states of statistical ensemble is 

𝑔(ℰ;𝑁,𝑀)=
𝜕

𝜕ℰ
𝐿(ℰ;𝑁,𝑀)=

ℇ
𝑀−3
2 𝑒−𝜇(𝑁,𝑀)

Γ(
𝑀−1
2 )

 (37) 

I use condition (13) to define effective ℰ𝑚𝑎𝑥
𝑒𝑓𝑓

 value: 

𝐿(𝑁,𝑀)=𝐿(ℰ𝑚𝑎𝑥
𝑒𝑓𝑓
;𝑁,𝑀)=

ℰ𝑚𝑎𝑥
𝑒𝑓𝑓

𝑀−1
2

Γ(
𝑀+1
2 )

𝑒−𝜇(𝑁,𝑀)=
(𝑁+𝑀−1)!

𝑁!(𝑀−1)!
 (38) 

Figure 7 show 𝐿(ℰ;𝑁,{𝑝𝑖}) calculated from exact expressions (4), (9), and from formula (34). 

From (11), (17), and (37) the pseudo probability density function of statistical ensemble in 

thermodynamic limit is 

𝑃(ℰ;𝑁,𝑀)=
ℇ
𝑀−3
2 𝑒−ℇ

Γ(
𝑀−1
2 )

=𝛾𝑏,𝑐(ℇ);        𝑏=1;  𝑐=
𝑀−1

2
 (39) 



 

 

, where 𝛾𝑏,𝑐(ℇ) is the probability density function of gamma (Forbes, Evans, Hastings, & Peacock, 

2010) distribution with scale parameter 𝑏=1, and shape parameter 𝑐=(𝑀−1)2⁄ . 

I calculate moments of ℰ: 

Mean: ℰ=∑ ℰ((𝑛𝑖); 𝑁,𝑀)∙𝑃((𝑛𝑖); 𝑁,𝑀)
(𝑛𝑖)

 (40) 

Variance: 𝜎ℰ
2=∑ (ℰ((𝑛𝑖);𝑁,𝑀)−ℰ)

2
∙𝑃((𝑛𝑖);𝑁,𝑀)

(𝑛𝑖)

 (41) 

𝑟𝑡ℎ moment 

about mean: 
𝜅𝑟(𝑁,𝑀)=∑ (ℰ((𝑛𝑖); 𝑁,𝑀)−ℰ)

𝑟
∙𝑃((𝑛𝑖); 𝑁,𝑀)

(𝑛𝑖)

 (42) 

The sums in (40-42) are over all combinations of (𝑛𝑖) satisfying (1), i.e. over all partitions of N. 

Expression (39) allows explicit calculation of all moments of ℰ in thermodynamic limit. From (39) 

the mean value ℰ, the variance 𝜎ℰ
2, and the third moment 𝜅3 are: 

ℰ=
𝑀−1

2
 (43) 

𝜎ℰ
2=
𝑀−1

2
 (44) 

𝜅3=𝑀−1 (45) 

Figure 8 shows calculations of mean value ℰ, the variance 𝜎ℰ
2, and the third moment 𝜅3 from the 

exact expressions (40-42) for the moments and (4) for the probability mass function. It 

demonstrates how these values asymptotically approach thermodynamic limit values (43-45) 

as 𝑁∙𝑝𝑖→∞, i.e. as 𝑡→∞ where 𝑡 is the proper time (Viznyuk, 2011). 

I shall demonstrate how the presented model correlates with some known constructs. Consider 

one-dimensional quantum harmonic oscillator. Its energy levels (Griffiths, 2005) are given by: 

ℰ𝑛=(𝑛+
1

2
)∙ℏ𝜔 (46) 

, where 𝜔 is the base frequency, and n=0,1,2… . Energy levels (46) are equally-spaced. In my 

model similar pattern is exhibited by energy levels of statistical ensemble of cardinality 𝑀=3, as 

shown on Figure 1. From (18) in thermodynamic limit approximation, the energy of statistical 

ensemble can be written as: 

 ℰ=∑
∆𝑖
2

2𝑛
𝑖∈𝑮

 (47) 

, where 
∆𝑖=𝑛𝑖−𝑛 ; ∑ ∆𝑖=0

𝑖

 ; 𝑛=
𝑁

𝑀
 (48) 

From above, the energy levels of statistical ensemble of cardinality 𝑀=3 are: 

ℰ𝑘=
𝐿𝑘
𝑁

 (49) 

, where 𝐿𝑘 are Loeschian numbers (Sloane, OEIS sequence A003136, 2015). If I designate the 

base frequency 𝜔=2/(𝑁ℏ), I can write the comparison table of the first few energy levels of 

quantum harmonic oscillator and statistical ensemble of cardinality 𝑀=3 in units of ℏ𝜔/2: 



 

 

quantum harmonic 

oscillator 
 1 3 5 7 9 11 13 15 17 19 21 23 25 27 

statistical ensemble of 

cardinality 𝑀=3 
0 1 3 4 7 9 12 13 16  19 21  25 27 

, where black boxes designate missing energy levels. In the second row the energy levels shown 

in shaded boxes are only realized for modes with 𝑚𝑜𝑑(𝑁,3)>0; and energy levels shown in 

white boxes are realized for modes with 𝑚𝑜𝑑(𝑁,3)=0. Here 𝑚𝑜𝑑(𝑁,3) is the remainder of 

division of 𝑁 by 3. 
Consider another classic quantum mechanical example: particle of mass 𝑚 in a box of size 𝐿. 

Its energy levels (Griffiths, 2005) are given by: 

ℰ𝑛=
ℎ2

8𝑚𝐿2
𝑛2 ; 𝑛=1,2,3… (50) 

In my model similar energy spectrum is exhibited by statistical ensemble of cardinality 𝑀=2, as 

shown on Figure 2. From (47) the energy levels of statistical ensemble of cardinality 𝑀=2 in  

thermodynamic limit approximation are: 
ℰ𝑛=

𝑛2

2𝑁
=
ℎ2

8𝑚𝐿2
𝑛2 ; 𝑛=0,1,2… (51) 

, where 𝑚=𝑁∙(
ℎ

2𝐿
)
2

 is to be considered as an effective mass of the particle. (52) 

Energy levels (51) with even 𝑛 are only possible when 𝑁 is even, and energy levels with odd 𝑛 are 

only possible when 𝑁 is odd. With ½ probability the lowest energy level is ℰ=ℰ0=0, and with 

½ probability it is ℰ=ℰ1=1, in units of  ℎ2(8𝑚𝐿2)⁄ . 

 

3. THERMODYNAMIC ENSEMBLE 

The statistical ensemble considered in previous section represents a single copy of 

underlying system, with mode 𝒌=(𝑛𝒊∈𝑮) uniquely identifying the state. In this section I consider 

observation as a random pick of underlying system from a collection of systems, each represented 

by its own statistical ensemble of cardinality 𝑀. I call such collection of systems thermodynamic 

ensemble. I designate {𝒌} the set of modes a system may occupy; 𝐾 the total number of systems,  

and 𝐾𝑘 the number of systems in mode 𝒌: ∑ 𝐾𝑘
{𝑘}

=𝐾 (53) 

I designate 𝑒𝑥𝑝(𝜌(𝑁)) the probability for a system to be in any mode with total population of 

microstates 𝑁. Then, from (11), the probability for a system to be in mode 𝒌 is: 

 𝑝𝑘=𝑒𝑥𝑝(𝜌(𝑁)+𝜇(𝑁)−ℰ(𝒌))=𝑒𝑥𝑝(𝜌𝑁+𝜇𝑁−ℰ𝒌) (54) 

I consider systems in the same mode 𝒌 indistinguishable to the observer. The probability mass 

function of distribution of modes among systems is 

𝑃((𝐾𝑘); 𝐾,(𝑝𝑘))=𝐾!∏
𝑝𝑘
𝐾𝑘

𝐾𝑘!
{𝑘}

 (55) 

The objective is to find the most probable distribution (𝐾𝑘). For standalone systems the most 

probable distribution is the one which maximizes (55), i.e. 

 𝐾𝑘=𝐾∙𝑝𝑘 (56) 



 

 

I consider systems to be part of some bigger system in a certain state.  That imposes conditions on 

distribution of modes among systems, so relations (43-45), (56) may no longer hold. I consider 

one of the possible conditions and show how it leads to the notion of temperature. Let the state of 

the bigger system be such that the average energy of the systems in thermodynamic ensemble is 

ℰ, which may be different from the average energy of standalone systems given by (43). Then: 

ℰ∙𝐾=∑ 𝐾𝑘∙ℰ𝒌
{𝑘}

 
(57) 

To find the most probable distribution of modes (𝐾𝑘) I shall maximize logarithm of (55) using 

method of Lagrange multipliers (Vapnyarskii, 2001; Huang, 2001) with conditions (53) and (57): 

ln𝑃((𝐾𝑘); 𝐾,(𝑝𝑘))=lnΓ(𝐾+1)+∑ [𝐾𝑘∙ln𝑝𝑘−lnΓ(𝐾𝑘+1)]

{𝑘}

=lnΓ(𝐾+1)+∑ [𝐾𝑘∙(𝜌𝑁+𝜇𝑁−ℰ𝒌)−lnΓ(𝐾𝑘+1)]

{𝑘}

 
(58) 

From (58), (57), (53) I obtain the following equation involving Lagrange multipliers 𝛼 and 𝛽: 

Ψ0(𝐾𝑘+1)=𝜌𝑁+𝜇𝑁−(1+𝛼)∙ℰ𝒌−𝛽 (59) 

, where Ψ0 is digamma function, and 𝛼 and 𝛽 are to be determined by solving (59) for 𝐾𝑘: 

𝐾𝑘=Ψ0
−1(𝜌𝑁+𝜇𝑁−

ℰ𝒌
𝑇
−𝛽)−1 (60) 

, and by plugging 𝐾𝑘 from (60) into (57) and (53). In (60) Ψ0
−1 is the inverse digamma function, 

and 1𝑇⁄ =1+𝛼. The parameter 𝑇 is commonly known as temperature. 

Since the number of systems 𝐾𝑘 in mode 𝒌 cannot be negative, expression (60) effectively 

limits modes which can be present in most probable distribution to those satisfying 

 
𝜌𝑁+𝜇𝑁−

ℰ𝒌
𝑇
−𝛽+𝛾≥0 (61) 

, where 𝛾≅0.577215665 is Euler–Mascheroni constant. Using approximation (Abramowitz, 

1972): 𝑒𝑥𝑝(Ψ0(𝐾𝑘+1))≅𝐾𝑘+12⁄ ,  I rewrite (60) as: 

 
𝐾𝑘≅𝑒𝑥𝑝(𝜌𝑁+𝜇𝑁−

ℰ𝒌
𝑇
−𝛽)−

1

2
 (62) 

Presence of −½ term in (62) leads to a computationally horrendous task of calculating 𝛽 and 𝑇, 

because the summation in (53) and (57) has to be only performed for modes satisfying (61). I shall 

leave the exact computation to a separate exercise, and make a shortcut, by ignoring −½ term in 

(62). This approximation is equivalent to a common postulate2 (Landau & Lifshitz, 1980) that the 

number of systems in mode 𝒌 is proportional to 𝑒𝑥𝑝(−ℰ𝑘 𝑇⁄). The shortcut allows calculation of 

Lagrange multiplier 𝛽 from (53): 

𝑒𝑥𝑝(−𝛽)=
𝐾

𝑍(𝑇)
 , where 𝑍(𝑇)=∑ 𝑒𝑥𝑝(𝜌𝑁+𝜇𝑁−

ℰ𝑘
𝑇
)

{𝑘}

 (63) 

Using expression (37), the partition function 𝑍(𝑇) in (63) can be evaluated as: 

                                                 
2 While widely used this postulate has rather unphysical consequence that there is a non-zero probability of finding a 

system in a mode with arbitrary large energy. Another consequence is the divergence of partition function for some 

constructs, e.g. hydrogen electronic levels (Strickler, 1966). 



 

 

𝑍(𝑇)=∑ 𝑒𝑥𝑝(𝜌𝑁)

∞

𝑁=1

∑ 𝑒𝑥𝑝(𝜇𝑁−
ℰ𝑘
𝑇
)

{𝑘}𝑁

=∑ 𝑒𝑥𝑝(𝜌𝑁)

∞

𝑁=1

∫ 𝑔(ℰ;𝑁,𝑀)
∞

0

𝑒𝑥𝑝(𝜇𝑁−
ℰ

𝑇
)𝑑ℰ

=∑ 𝑒𝑥𝑝(𝜌𝑁)

∞

𝑁=1

∫
ℰ
𝑀−3
2

Γ(
𝑀−1
2 )

∞

0

𝑒𝑥𝑝(−
ℰ

𝑇
)𝑑ℰ=𝑇

𝑀−1
2 ∑ 𝑒𝑥𝑝(𝜌𝑁)

∞

𝑁=1

=𝑇
𝑀−1
2  

(64) 

The equation (57) then becomes ℰ=𝑇2∙
𝜕

𝑇
ln𝑍=

𝑀−1

2
∙𝑇 (65) 

Eq. (65) is the familiar relation (Huang, 2001) between average per-particle energy and 

temperature in (𝑀−1)-dimensional ideal Maxwell-Boltzmann gas. Thermodynamic entropy 𝑆𝑻 
can be evaluated as: 

𝑆𝑻=−∑ 𝑃𝑘(𝑇)∙ln𝑃𝑘
{𝑘}

(𝑇)=
𝑀−1

2
ln(𝑒𝑇)−∑ (𝜌𝑁+𝜇𝑁)∙𝑃𝑘(𝑇)

{k}

=
𝑀−1

2
ln(𝑒𝑇)−∑ (𝜌𝑁+𝜇𝑁)𝑒𝑥𝑝(𝜌𝑁)∑

𝑒𝑥𝑝(𝜇𝑁−
ℰ𝑘
𝑇)

𝑍(𝑇)
{k}𝑁

∞

𝑁=1

=
𝑀−1

2
ln(𝑒𝑇)−∑ (𝜌𝑁+𝜇𝑁)∙𝑒𝑥𝑝(𝜌𝑁)

∞

𝑁=1

 

(66) 

, where 

𝑃𝑘(𝑇)=
𝐾𝑘
𝐾
= 
𝑒𝑥𝑝(𝜌𝑁+𝜇𝑁−

ℰ𝑘
𝑇)

𝑍(𝑇)
 (67) 

With expression (17) for 𝜇𝑁, in thermodynamic limit, I rewrite (66) as 

𝑆𝑻=
𝑀−1

2
ln(2𝜋𝑒𝑇)−

𝑀

2
ln𝑀+𝑆𝑵+

𝑀−1

2
∑ 𝑒𝑥𝑝(𝜌𝑁)ln𝑁

𝑁

 (68) 

, where 𝑆𝑁=−∑ 𝜌𝑁∙𝑒𝑥𝑝(𝜌𝑁)

𝑁

 (69) 

To calculate 𝑆𝑁 I have to make an assumption on 𝑒𝑥𝑝(𝜌𝑁) distribution. As a possible example, I 

shall assume the number 𝑁=∑ 𝑛𝑖 𝑖∈𝑮  of microstates for a system in thermodynamic ensemble is 

Poisson-distributed around mean 𝑁≫1 value. Therefore, for 𝑆𝑁 I can use expression for the 

entropy of Poisson distribution (Evans, Boersma, Blachman, & Jagers, 1988): 

 

𝑆𝑁≅
1

2
ln2𝜋𝑒𝑁 (70) 

I also use the following: 
∑ 𝑒𝑥𝑝(𝜌𝑁)ln𝑁

𝑁

=ln𝑁≅ln𝑁 (71) 

With (70), (71) I finally obtain: 

𝑆𝑻=
𝑀

2
ln(2𝜋𝑒

𝑁

𝑀
)+
𝑀−1

2
ln𝑇 (72) 

In case of 𝑀=4, i.e. for (𝑀−1)=3 degrees of freedom, the expression (72) turns into 

equivalent of Sackur-Tetrode equation (Huang, 1987) for entropy of ideal gas. For thermodynamic 

entropy of a standalone system, instead of (66-72) from (17) and (43) I have: 



 

 

𝑆=−∑ 𝑃𝑘∙ln𝑃𝑘
{𝑘}

=−∑ 𝑒𝑥𝑝(𝜇𝑁−ℰ𝑘)∙(𝜇𝑁−ℰ𝑘)

{𝑘}

= ℰ−𝜇𝑁

=
𝑀−1

2
−
𝑀

2
ln𝑀+

𝑀−1

2
ln2𝜋𝑁=

𝑀

2
ln(2𝜋𝑒

𝑁

𝑀
)−
1

2
ln2𝜋𝑒𝑁 

(73) 

Thermodynamic entropy (72) per system in thermodynamic ensemble is larger than entropy (73) 

of a standalone system by term (70) plus the temperature-related term. The increase in entropy by 

𝑆𝑁 happens because of the spread in values of 𝑁, i.e. in age of the systems. The increase in entropy 

by temperature-related term 
𝑀−1

2
ln𝑇 is due to the spread in energies of the systems. The non-zero 

thermodynamic entropy of a standalone system implies its state is unknown prior to observation, 

for each observation. If the state is known prior to observation, e.g., as a result of prior observation, 

then thermodynamic entropy is zero. It still leaves non-zero microstate entropy (Viznyuk, 2011). 

Using (1) I rewrite (73) in terms of proper time 𝑡 as: 

𝑆(𝑡;𝑀)=𝑆0(𝑀)+
𝑀−1

2
𝑡 , where 𝑆0(𝑀)=

𝑀−1

2
ln2𝜋𝑒−

𝑀

2
ln𝑀 (74) 

The expression for 𝑆0(𝑀) in (74) was derived in thermodynamic limit, i.e. when 𝑁→∞. When 

𝑁=1 (i.e. when 𝑡=0)  𝑆=ln𝑀. By comparing 𝑆0(𝑀) to ln𝑀 (Figure 9) I see that 𝑆0(𝑀) fairly 

closely matches ln𝑀 except when 𝑀 is large enough, in which case thermodynamic limit 

approximation for the given 𝑁 becomes less valid anyhow. Therefore, I can replace 𝑆0(𝑀) with   

ln𝑀 in (74) and obtain thermodynamic entropy of a standalone system as: 

𝑆(𝑡;𝑀)=ln𝑀+
𝑀−1

2
𝑡 (75) 

 Eq. (75) establishes [linear] relation between thermodynamic entropy and proper time, as 

yet another manifestation of the Second Law of Thermodynamics (SLT). Previously, SLT has been 

demonstrated in the context of time model (Viznyuk, 2011) using numeric calculation of 

microstate entropy. 

The expression for 𝑍(𝑇) in (64) has been derived in thermodynamic limit approximation, 

i.e. when 𝑁→∞. It means there must be large number of energy levels included in sum (63), i.e. 

temperature 𝑇 cannot be too small. Therefore, the expressions (64-65) are only valid for 𝑇≫∆ℰ, 

where ∆ℰ is the characteristic spacing between energy levels. 

For statistical ensemble of cardinality 𝑀=3 the approximately evenly-spaced energy 

levels (see Figure 1) allow for more accurate expression for partition function. For a mode with 

given 𝑁 the characteristic spacing between energy levels in the limit 𝑁→∞ is: 

𝑀!

𝑔(ℰ;𝑁,𝑀)
=6∙𝑒𝑥𝑝(𝜇𝑁)=

18√3

2𝜋𝑁
≅
5

𝑁
 (76) 

With time (1) increment, the system transitions from a mode with 𝑁 to a mode with 𝑁+1, and 

between adjacent energy levels of the mode with 𝑁 and the mode with 𝑁+1. In previous section 

I have shown the characteristic spacing between adjacent energy levels of combined modes for 

statistical ensemble of cardinality 𝑀=3 is ℏ𝜔=2𝑁⁄ . If 𝑚𝑜𝑑(𝑁,3)=0 the first 17 energy 

levels in units of ℏ𝜔2⁄ =1𝑁⁄  and their degeneracy are: 

𝑘 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

ℰ𝑘 0 3 9 12 21 21 27 36 39 39 48 57 57 63 63 75 81 

𝑔𝑘 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 



 

 

When 𝑚𝑜𝑑(𝑁,3)>0 the first 16 energy levels in the same units and their degeneracy are: 

𝑘 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

ℰ𝑘 1 4 7 13 16 19 25 28 31 37 43 49 52 61 64 67 

𝑔𝑘 3 3 6 6 3 6 3 6 6 6 6 9 6 6 3 6 

If I were to use (46) as an approximation for the combined energy levels above, the average energy 

of modes with given 𝑁 would be equal (Planck's law): 

ℰ𝑁= 
ℏ𝜔

2
+

ℏ𝜔

exp(
ℏ𝜔
𝑇)−1

 
(77) 

From here ℰ𝑁= 𝑇∙[1+
(ℏ𝜔)2

12𝑇2
+𝑂((

ℏ𝜔

𝑇
)
3

)] when ℏ𝜔≪𝑇. The relation ℰ𝑁 ℏ𝜔⁄  is sometimes 

referred to as the average number of photons in a mode (Kittel & Kroemer, 1980). In my model 

the notion of a photon is meaningless. The quantized energy levels (9,47) make transitions between 

modes appear as absorption or emission of particles. 

There is a continuing controversy (Kish, 2015) about the first term in (77). ℏ𝜔/2 term results 

in infinite zero-point energy of the field if all modes 0≤ℏ𝜔≤∞ are summed up. The common 

“solution” to this problem is to ignore ℏ𝜔/2 term when calculating radiation density, via technique 

called renormalization. The problem does not exist in my model since ℏ𝜔 has an upper limit (76). 

The notion of a temperature, like the notions of energy, of force, and many other in modern 

physics lacks clear definition. For example, Wikipedia (Temperature, 2016) provides an example 

of a definition void of any meaning: Temperature is the transfer of thermal energy between objects. 

Other (Cool Cosmos, 2016) seem to do somewhat better: Temperature is a measure of the average 

heat or thermal energy of the particles in a substance. 

In this section I have arrived at the notion of temperature as the ratio of average energy (65) of 

the systems in thermodynamic ensemble to the expectation value (43) of energy of a randomly 

chosen standalone system. Thus, the temperature is a measure of ergodicity with respect to energy 

as statistical parameter. If 𝑇=1 then thermodynamic ensemble is ergodic. 

 

4. DYNAMICS OF OBSERVABLES 

In this section I discuss dynamics of observables in the context of time model (Viznyuk, 2011). 

An observable value can be any function of canonical variables (22) or any function of population 

numbers (𝑛𝑖). Such function represents transformation by the measuring device from variables 

which pertain to underlying system only, to observable values. Within the scope of this section I 

consider characteristic timescales of transformation by the measuring device much shorter than 

the timescale of exponential decline (24). This lends the traditional interpretation of conservation 

of energy law. Special interest present observable values  {𝑧𝑖} obtained as an orthogonal projection 

𝚯 of canonical variables {𝑥𝑖} in (22): 

 𝒛=𝚯𝑻∙𝒙 (78) 

Transformation (78) preserves quadratic form (23) which means the observable values  {𝑧𝑖} 
have familiar from classical mechanic relation to energy. The orthogonal transformation 𝚯 in (78) 

represents the measuring device. The state of measuring device may reflect the state of underlying 

system. Therefore, the orthogonal transformation 𝚯 may depend on 𝒙 and, possibly, proper time: 

𝚯=𝚯(𝑡,𝒙). Any orthogonal matrix 𝚯 can be expressed (Youla, 1961) as a matrix exponent of a 

real skew-symmetric matrix 𝑨: 𝚯=𝑒𝑥𝑝(𝑨) , where 𝐴𝑖𝑗=−𝐴𝑗𝑖 (79) 

http://www.merriam-webster.com/dictionary/ergodic


 

 

To demonstrate the possible behavior of observed values, I used the simplest form of 𝑨 as 

𝐴𝑖𝑗=𝑊∙(𝑥𝑖−𝑥𝑗) ;  𝑖,𝑗>1  (80) 

, where 𝑊 is some non-zero real number3, and: 𝐴1𝑗≡0 ; 𝐴𝑖1≡0 ∀ 𝑖,𝑗  (81) 

Condition (81) ensures transformation (78) is restricted to hyper-plane (1). Without condition (81), 

due to 𝑥1≡0 in (22), transformation (78) would result in linearly dependent components of vector 

𝒛, while I’m interested in irreducible representation. Therefore, I consider all transformations are 

restricted to hyper-plane (1) and all matrices are of rank 𝑀−1, dropping 𝑥1≡0 component. 

I used transformation (78) with (79-81) and time model defined in (Viznyuk, 2011) to 

numerically calculate dynamics of observable values  {𝑧𝑖}  and of energy ℰ. The MATLAB code 

used for calculations and graphs is http://phystech.com/download/ensemble_dynamics12.m. 

Figure (10) demonstrates time dynamics of {𝑧𝑖} for statistical ensemble of cardinality 𝑀=3. The 

observable values 𝑧2 and 𝑧3 exhibit behavior similar to a damped harmonic oscillator, where 𝑧2 
represents the coordinate, and 𝑧3 the momentum. The oscillations of 𝑧2 and 𝑧3 are shifted by 𝜋/2 
with respect to each other, as are the coordinate and momentum of a harmonic oscillator. The 

corresponding time dynamics of energy is shown on Figure 12. 

The choice of skew-symmetric matrix (80) is rather arbitrary. I only used it to demonstrate 

possible time dynamics of observables within the context of the model. 

I want to explicitly show the temporal dependence of observables, and then compare it to 

numeric simulation on Figure 10. To do that I note that arbitrary real skew-symmetric matrix 𝑨 

can be reduced (Youla, 1961; Voronov, 2003) to a block-diagonal form 𝐃 by an orthogonal  

transformation 𝑶: 𝑨=𝑶∙𝑫∙𝑶𝑻 (82) 

, where 𝑫=

(

 
 
 

0 0 0
0 0 𝛼1
0 −𝛼1 0

⋯ 0

⋮ ⋱ ⋮

0 ⋯
0 𝛼𝑛
−𝛼𝑛 0)

 
 
 

 , and 𝛼𝑖=𝛼𝑖(𝑡,𝒙) are real (83) 

Plugging (82) into (79) I obtain from (78): 

𝒛=𝑶∙𝑒𝑥𝑝(𝑫𝑻)∙𝑶𝑻∙𝒙 (84) 

, where 

 

𝑒𝑥𝑝(𝑫𝑻)=

(

 
 
 

1 0 0
0 𝑐𝑜𝑠(𝛼1) −𝑠𝑖𝑛(𝛼1)

0 𝑠𝑖𝑛(𝛼1) 𝑐𝑜𝑠(𝛼1)
⋯ 0

⋮ ⋱ ⋮

0 ⋯
𝑐𝑜𝑠(𝛼𝑛) −𝑠𝑖𝑛(𝛼𝑛)

𝑠𝑖𝑛(𝛼𝑛) 𝑐𝑜𝑠(𝛼𝑛))

 
 
 

 (85) 

I re-write (84) as 
𝒚=𝑶𝑻∙𝒛=𝑒𝑥𝑝(𝑫𝑻)∙𝑶𝑻∙𝒙=𝑒𝑥𝑝(𝑫𝑻)∙𝒖  (86) 

, where I introduced new knowledge vector 𝒚=𝑶𝑻∙𝒛 and new state vector 𝒖=𝑶𝑻∙𝒙. Action of 

𝑒𝑥𝑝(𝑫𝑻) operator on vector 𝒖 in (86) constitutes transformation by the measuring device. Vector 

                                                 
3 𝑊 has to be non-zero real number to ensure 𝚯 is an orthogonal transformation 

http://www.mathworks.com/
http://phystech.com/download/ensemble_dynamics12.m


 

 

𝒖 represents the underlying system in eigenbasis of the measuring device. In this basis the action 

of measuring device is reduced to rotations in 2-D orthogonal eigenspaces, as evident from (85). 

As I mentioned earlier, the rank of matrices 𝑫, 𝑶 and of vectors 𝒙,𝒛,𝒚,𝒖 is 𝑀−1. Therefore, 

transformation (86) takes especially simple form in case of 𝑀=3: 

𝒚=(
𝑦1
𝑦2
)=(

𝑐𝑜𝑠(𝛼) −𝑠𝑖𝑛(𝛼)

𝑠𝑖𝑛(𝛼) 𝑐𝑜𝑠(𝛼)
)∙𝒖 , where 𝛼=𝛼(𝑡,𝒖)  , and 𝒖=(

𝑢1
𝑢2
) (87) 

When 𝑀={1,2} the transformation is trivial: if 𝑀=1 then 𝒚≡0; if 𝑀=2 then 𝒚=1∙𝒖. 

Transformation (87) can be expressed in complex notation using real components 𝑢1,𝑢2,𝑦1,𝑦2: 

𝒚=(𝑒
𝑖𝛼 0
0 𝑒−𝑖𝛼

)∙𝒖 , where 𝒖=
1

√2
∙(
𝑢1+𝑖𝑢2
𝑢1−𝑖𝑢2

) , and  𝒚=
1

√2
∙(
𝑦1+𝑖𝑦2
𝑦1−𝑖𝑦2

) (88) 

In case of 𝑀>3 one can convert to complex notation by combining pairs of real {𝑢𝑖}, {𝑦𝑖} 
components corresponding to 2-D eigenspaces in (85) into complex numbers as in (88). In case of 

even 𝑀 there will be one real-only component 𝑢𝑖 left un-transformed. In complex notation (85) 

can be written as a unitary matrix 𝑼;  

for even 𝑀: 𝑼=

(

  
 

1   
 𝒆−𝑖𝛼1  
  𝒆𝑖𝛼1

⋯ 0

⋮ ⋱ ⋮

0 ⋯ 𝒆−𝑖𝛼𝑛  
 𝒆𝑖𝛼𝑛)

  
 

 , where 𝛼𝑖=𝛼𝑖(𝑡,𝒖) (89) 

, and for odd 𝑀: 𝑼=

(

 
 

𝒆−𝑖𝛼1  
 𝒆𝑖𝛼1

⋯ 0

⋮ ⋱ ⋮

0 ⋯ 𝒆−𝑖𝛼𝑛  
 𝒆𝑖𝛼𝑛)

 
 

  (90) 

Transformation (86) can now be expressed in complex notation as: 

 
𝒚=𝑼†∙𝒖  (91) 

In complex notation orthogonal matrix (85) takes diagonal form and becomes unitary matrix 

(89-90). Operating with unitary matrices in diagonal form is easier than with orthogonal matrix 

(85), which is the reason to use complex notation. It is tempting to eliminate the seeming 

redundancy in pairs of complex eigenvalues in (89-90), and in their corresponding eigenvectors 

(88) and reduce the rank of the vectors and matrices by half. I hesitate to do that because it will 

introduce ambiguity about the rank of underlying system. For example, the following unitary 

transformation and associated knowledge vector would then apply to underlying system of 

cardinality 𝑀=4 as well as 𝑀=5 (if rotation angle for the first eigenspace is 0): 

𝒚=(
1 0
0 𝑒𝑖𝛼

)∙𝒖 

Expressions (87-88) represent orthogonal transformation of observation basis for statistical 

ensemble of cardinality 𝑀=3. In previous section I have shown that 𝑀=3 case corresponds to 

a harmonic oscillator, i.e. free field. Expressions (84-86) or equivalent expressions (89-91) define 

measurement (78) as 2-D rotations (87-88) of observation basis within 2-D eigenspaces of the 

measuring device. This is the fundamental principle behind QM [in Heisenberg interpretation] 

describing evolution of a system as rotation (i.e. unitary transformation) of observation basis. 



 

 

Consider scenario where eigenspaces of the measuring device do not explicitly depend on time, 

i.e. 𝜕𝑶(𝑡,𝒙)𝜕𝑡⁄ =0 in (86). Then, 𝜕𝒖𝜕𝑡⁄ =−𝒖, and from (89-91) I derive the following 

differential equation for vector 𝒚: 𝜕𝒚

𝜕𝑡
=[
𝜕

𝜕𝑡
𝑼†]∙𝒖+𝑼†∙

𝜕𝒖

𝜕𝑡
=𝜱†∙𝒚 (92) 

, where 

 

𝜱=

(

 
 
 
 
 
 
 

0   

 −𝑖
𝜕𝛼1
𝜕𝑡
−1  

  𝑖
𝜕𝛼1
𝜕𝑡
−1

⋯ 0

⋮ ⋱ ⋮

0 ⋯
−𝑖
𝜕𝛼𝑛
𝜕𝑡
−1  

 𝑖
𝜕𝛼𝑛
𝜕𝑡
−1)

 
 
 
 
 
 
 

=

(

 
 
 

0   
 −𝑖𝜔1−1  
  𝑖𝜔1−1

⋯ 0

⋮ ⋱ ⋮

0 ⋯
−𝑖𝜔𝑛−1  
 𝑖𝜔𝑛−1)

 
 
 

 

 

(93) 

for even 𝑀 

𝜱=

(

 
 
 
 
 
 
−𝑖
𝜕𝛼1
𝜕𝑡
−1  

 𝑖
𝜕𝛼1
𝜕𝑡
−1

⋯ 0

⋮ ⋱ ⋮

0 ⋯
−𝑖
𝜕𝛼𝑛
𝜕𝑡
−1  

 𝑖
𝜕𝛼𝑛
𝜕𝑡
−1)

 
 
 
 
 
 

=

(

 
 

−𝑖𝜔1−1  
 𝑖𝜔1−1

⋯ 0

⋮ ⋱ ⋮

0 ⋯
−𝑖𝜔𝑛−1  
 𝑖𝜔𝑛−1)

 
 

 

 

(94) 

for odd 𝑀 

, where 𝜔𝑖=
𝜕𝛼𝑖(𝑡,𝒖)

𝜕𝑡
  (95) 

Equation (92) is similar to Schrödinger’s equation where Hamiltonian  𝓗=𝑖𝜱† and Planck’s 

constant ℏ=1, and where 𝜔𝑖 are characteristic frequencies. However: 

1. Equation (92) is for the knowledge vector, while Schrödinger equation is for the state vector 

(wave function). Wave function purports to represent the underlying system only. The 

evolution of wave function according to Schrödinger’s equation is independent of 

representation, i.e. independent of the way the system is observed. For Schrödinger’s 

equation different representations are unitarily equivalent. That contradicts to (Haag, 1955) 

theorem which states no such equivalence exists. In my model the evolution of knowledge 



 

 

vector (91) is determined by propagator matrix 𝑼 which takes diagonal form (89-90) in 

representation of eigenvectors of the measuring device. Thus the evolution of knowledge 

vector depends on the measuring device. It is easy to prove no unitary mapping can be 

established between knowledge vector spaces for measuring devices with different 

eigenspaces. Consider two knowledge vectors 𝒚𝟏 and 𝒚𝟐 observed via two different 

devices in representation of eigenvectors of corresponding device. Then both propagator 

matrices 𝑼𝟏 and 𝑼𝟐 for  𝒚𝟏 and 𝒚𝟐 are diagonal. Suppose there is a unitary mapping 𝑽 such 

that 𝒖𝟐=𝑽
†𝒖𝟏 and 𝒚𝟐=𝑽

†𝒚𝟏. Then, from (91) the propagator matrices 𝑼𝟏 and 𝑼𝟐 for 

𝒚𝟏 and 𝒚𝟐 must relate to each other as 𝑼𝟐=𝑽
†𝑼𝟏𝑽. If 𝑼𝟏 and 𝑼𝟐 are both diagonal, that 

is only possible if 𝑼𝟏=𝑼𝟐. 
2. 𝜱 matrix contains −1 components in diagonal elements which results in exponential decay 

of vector 𝒚, the same as exponential decay of canonical variables 𝒙 in (24), while 

Schrödinger equation describes superposition of non-decaying harmonic waves (Ward & 

Volkmer, 2006), which is evident if Schrödinger equation is written in energy eigenvector 

representation. 

3. Characteristic frequencies 𝜔𝑖 are expected to exhibit exponential decay (24) as a result of 

exponential decay of canonical variables 𝒙. 

Features 2,3 stated above are evident in numeric simulation shown on Figure 10, where knowledge 

vector and oscillation frequency decay with time as 𝑡→∞. Hence, 𝜔𝑖(𝒖=𝟎)=0 should be the 

minimum of functions 𝜔𝑖(𝒖). In the vicinity of  𝒖=0, 𝜔𝑖(𝒖) is approximated by a quadratic form 

on 𝒖. The obvious choice of quadratic form is energy (23). Matrix 𝜱 (93-95) must be invariant 

with respect to unitary transformations within eigenspaces of the measuring device, but not 

necessarily invariant with respect to unitary transformation of the whole knowledge vector space, 

per Haag’s theorem. Therefore, each 𝜔𝑖(𝒖) can only depend on corresponding eigenspace 

component of energy: 

𝜔𝑖=
𝜕𝛼𝑖
𝜕𝑡
=
ℰ𝑖
ℏ

 , where ℰ𝑖=
𝑁

2
⟨𝑢𝑖|𝑢𝑖⟩=

𝑁

2
⟨𝑦𝑖|𝑦𝑖⟩ , and ∑ ℰ𝑖

𝑖

=ℰ (96) 

, and ℏ is a constant of proportionality which I’m tempted to call Planck’s constant. 

Unlike (91), the equation (92) with (96) only contains reference to the knowledge vector 𝒚 and 

no reference to the state vector 𝒖 of underlying system. 

The equations (91-92) for the knowledge vector bear familiar hallmarks of quantum physics. 

Consider e.g. wave-particle duality. The particle properties result from discreteness of probability 

mass function (4) and of energy spectrum (Table 1). Observable values change in “quantum” leaps, 

with the leap size decreasing as ~𝑁−1 if 𝑁→∞, i.e. as underlying system approaches 

thermodynamic limit. The choice of observation basis can make quantum leaps between the states 

of underlying system look like emission and absorption of particles. In a case of underlying system 

represented by statistical ensemble of cardinality 𝑀=3 the number of “particles” in the mode is 

linearly proportional to the energy of the system (Figure 1). For underlying system of cardinality 

𝑀>3 the energy is given by the sum (96) of energies of eigenspace fields, however, it is not 

linearly proportional to the number of particles, as can be seen from Figure 2. 

Wave properties are exhibited through interference of knowledge vectors. Suppose the same 

underlying system, represented by vector 𝒖 in (91), is observed via two different devices, e.g. via 

two slits in double-slit experiment. First device is represented by propagator matrix 𝑨, and second 

device by 𝑩. The resultant knowledge vector 𝒚 is the sum of vectors 𝒂 and 𝒃: 

 𝒚=𝒂+𝒃=(𝑨†+𝑩†)∙𝒖 (97) 



 

 

The field intensity, represented by ℰ(𝒚) is then: 

ℰ(𝒚)=
𝑁∙⟨𝒚|𝒚⟩

2
=
𝑁∙⟨𝒖(𝑨+𝑩)|(𝑨†+𝑩†)𝒖⟩

2
=2∙ℰ(𝒖)+𝑁∙Re⟨𝒖|𝑨𝑩†|𝒖⟩ (98) 

In order to obtain the desired result, I demand 𝑨, 𝑩 matrices have the same eigenspaces. In 

layman’s terms, the interference occurs between wave components polarized along the same axis. 

Matrices 𝑨, 𝑩 diagonal in eigenspace representation are: 

𝑨=

(

 
 

𝒆−𝑖𝛼1  
 𝒆𝑖𝛼1

⋯ 0

⋮ ⋱ ⋮

0 ⋯ 𝒆−𝑖𝛼𝑛  
 𝒆𝑖𝛼𝑛)

 
 

 𝑩=

(

 
 

𝒆−𝑖𝛽1  
 𝒆𝑖𝛽1

⋯ 0

⋮ ⋱ ⋮

0 ⋯ 𝒆−𝑖𝛽𝑛  
 𝒆𝑖𝛽𝑛)

 
 

 (99) 

, where 𝛼𝑛 , 𝛽𝑛 are all real. Then (98) can be rewritten as below, in case of 𝑀=3: 

ℰ(𝒚)=2∙ℰ(𝒖)∙[1+𝑐𝑜𝑠(𝛼1−𝛽1)] (100) 

Expr. (100) is a characteristic intensity distribution in interference pattern in a double-slit 

experiment. 

Consider another QM hallmark: violation of (Bell, 1964) inequalities. Within my framework 

the violation of Bell’s inequalities can be understood without invoking the concept of wave 

function collapse. In a typical experiment (Aspect A., 1981; Hensen B., 2015) two entangled 

particles represent the same underlying system 𝒖, which is being observed via two spatially 

separated devices 𝑨 and 𝑩. An observer Alice is attached to device 𝑨, and observer Bob is attached 

to device 𝑩. If Alice and Bob did not communicate via conventional channel, neither of them would 

know the result of other observer. The statistical correlation can only be detected when results 

(i.e. vectors 𝒂 and 𝒃) from each device converge to a single observer to form the resultant 

observation (97). The expression for the combined signal intensity is given by (98) and, in a 

particular case of 𝑀=3, by (100). The target of experiments on violation of Bell’s inequalities is 

the second term in (98,100). The cos() function in the second term manifests the violation (Bell, 

1964). It shows double-slit experiment is about as good experiment on violation of Bell’s 

inequalities as any other. Confusion of statistical correlation with causality in this context led some 

minds to bewilderment about spooky action at a distance (Einstein A., 1935). 

If particles are not entangled, they form two independent underlying systems 𝒖1and 𝒖2. Then  

instead of (97-98) I have: 
𝒚=𝒂+𝒃=𝑨†𝒖1+𝑩

†𝒖2 (101) 

ℰ(𝒚)=ℰ(𝒖1)+ℰ(𝒖2)+𝑁∙Re⟨𝒖1|𝑨𝑩
†|𝒖2⟩ (102) 

In case of 𝑀=3 (102) becomes: 

ℰ(𝒚)=ℰ(𝒖1)+ℰ(𝒖2)+𝑁∙⟨𝒖1|𝒖2⟩∙𝑐𝑜𝑠(𝛼1−𝛽1) (103) 

When averaged over thermodynamic ensembles of 𝒖1 and 𝒖2 the correlation term in (103) 

disappears. Expressions (97-103) imply 𝑨 and 𝑩 have the same eigenspaces, i.e. both devices 

measure the same observables. 

If measurement 𝑸(𝑡) has been performed at time 𝑡=0, and the result is 𝑞0, what is the 

expectation value at time 𝑡>0? The answer from QM is: 

𝑞(𝑡)=⟨𝒖0|𝑬(𝑡)𝑸(0)𝑬
†(𝑡)|𝒖0⟩ , where 𝑬(𝑡)=𝑒𝑥𝑝(𝑖

𝑯

ℏ
𝑡) ;  𝑯 is Hamiltonian, (104) 

, and 𝒖0 is the state of the system at 𝑡=0. Is the system considered closed or open? In QM (104) 

implies the system is closed, as only a closed system can be described by the state vector 𝒖0. On 



 

 

the other hand, if the system is closed, it has to be in an energy eigenstate. If 𝒖0 is also an energy 

eigenstate, then according to (104) 𝑞(𝑡)≡𝑞0 ∀ 𝑡≥0, i.e. a closed system is static. Current QM 

theory handles this paradox by considering system quasi-closed, i.e. described by a state vector, 

and 𝑯-matrix with off-diagonal terms. Then 𝑯 is not a true Hamiltonian of the system but so-

called interaction Hamiltonian, and 𝒖0 is not an eigenstate of 𝑯. There is no such paradox in my 

framework. But before I explain, let’s define what open and closed system is: 

¶ The system is closed in the given basis if all canonical state vectors of the system can be 

expressed via basis vectors. Otherwise, the system is open. 

In my framework the statistical ensemble (𝑛𝑖∈𝑮) representing the underlying system can have the 

complete set of canonical variables (22) and observables (78) (i.e. basis) defined, in which the 

system is closed. However, with respect to other set of observables the same underlying system 

could be open. The concept of temperature was derived in previous section with this 

understanding. There the system is open with respect to a limited set of macroscopic observables 

such as temperature, since macroscopic observables do not define state vectors. Regardless of if 

the system is open or closed, it is not static in presented framework. 

In QM (104) shows measurement 𝑸(𝑡)=𝑬(𝑡)𝑸(0)𝑬†(𝑡) is obtained from measurement 

𝑸(𝑡=0) via unitary transformation 𝑬(𝑡) of observation basis, in accordance with Heisenberg 

picture of QM formalism. Since the result of the measurement at 𝑡=0 is one of the eigenvalues 

𝑞𝑠 of operator 𝑸(0), the state 𝒖0 of the system at 𝑡=0 has to be one of the eigenstates of 𝑸(0). 
Attempts to understand this fact have needlessly led Copenhagen School to the concept of wave 

function collapse. Below I shall derive the time dependence of 𝑞(𝑡) in (104), and then compare it 

with my framework. I designate 𝒖𝑠 the eigenvectors of 𝑸(0), corresponding to eigenvalues 𝑞𝑠.  
Then: 𝑸(0)=∑ |𝒖𝑠⟩𝑞𝑠⟨𝒖𝑠|=

𝑠

∑ |

𝑠,𝑗,𝑘

𝒇𝑗⟩⟨𝒇𝑗|𝒖𝑠⟩𝑞𝑠⟨𝒖𝑠|𝒇𝑘⟩⟨𝒇𝑘| (105) 

, where I converted to eigenbasis 𝒇𝑘 of 𝑯-matrix. It allows rewriting (104) as 

𝑞(𝑡)=∑ ⟨𝒖0|𝒇𝑗⟩

𝑠,𝑗,𝑘

⟨𝒇𝑗|𝒖𝑠⟩𝑞𝑠⟨𝒖𝑠|𝒇𝑘⟩⟨𝒇𝑘|𝒖0⟩∙𝑒𝑥𝑝(𝑖
𝐸𝑗−𝐸𝑘

ℏ
𝑡) (106) 

, where 𝐸𝑗 are eigenvalues of 𝑯. Coefficients ⟨𝒖0|𝒇𝑗⟩⟨𝒇𝑗|𝒖𝑠⟩𝑞𝑠⟨𝒖𝑠|𝒇𝑘⟩⟨𝒇𝑘|𝒖0⟩ are all real because 

their transpose by 𝑗,𝑘 indices is equal to their adjoint. Hence, I can I rewrite (106) as: 

𝑞(𝑡)=∑ ⟨𝒖0|𝒇𝑗⟩⟨𝒇𝑗|𝒖𝑠⟩𝑞𝑠⟨𝒖𝑠|𝒇𝑘⟩⟨𝒇𝑘|𝒖0⟩∙𝑐𝑜𝑠(
𝐸𝑗−𝐸𝑘

ℏ
𝑡)

𝑠,𝑗,𝑘

 (107) 

From (107) it is clear that (𝑞(0)−𝑞(𝑡))|𝑡→0∝𝑡
2 (Misra B., 1977; Koshino K., 2005), which can 

also be demonstrated if (104) is broken into power series of 𝑡 near 𝑡=0: 

𝑞(𝑡)=⟨𝒖0|𝑐𝑜𝑠(𝑎𝑑(
𝑯
ℏ
𝑡))𝑸|𝒖0⟩=𝑞0−

𝑡2

2ℏ𝟐
⟨𝒖0|[𝑯,[𝑯,𝑸]]|𝒖0⟩

+
𝑡4

24ℏ4
⟨𝒖0|[𝑯,[𝑯,[𝑯,[𝑯,𝑸]]]]|𝒖0⟩+𝑜(𝑡

6) 

(108) 

, where 𝑎𝑑(𝑯)𝑸=[𝑯,𝑸]=𝑯𝑸−𝑸𝑯 are commutator brackets. If the system was in state 𝒖0 at 

𝑡=0 then the probability 𝑃(𝑡) to find it in state 𝒖0 at 𝑡>0 is: 

𝑃(𝑡)=∑ 𝑃𝑗𝑃𝑘∙𝑐𝑜𝑠(
𝐸𝑗−𝐸𝑘

ℏ
𝑡)

𝑗,𝑘

 , where 𝑃𝑘=|⟨𝒇𝑘|𝒖0⟩|
2 (109) 



 

 

From (107-109) it follows that 𝜕𝑞(𝑡)𝜕𝑡⁄ |𝑡=0=0; 𝜕𝑃(𝑡)𝜕𝑡⁄ |𝑡=0=0 leading to what is 

perceived as quantum Zeno effect. The eigenvalues 𝐸𝑗 of 𝑯-matrix are not true energy levels of 

the system because 𝑯-matrix is not a true Hamiltonian, as I noted above. They are also defined up 

to an arbitrary constant, because only the difference between them matters for the dynamics of the 

system, according to (107,109). 

The meaning of (107) is expectation value, not the actual result of the measurement. The 

measurement always produces one of the eigenvalues of 𝑸. It is a mistake to “confirm” Zeno effect 

by implying that if the result of the measurement at 𝑡=0 is 𝑞0 then the result of a subsequent 

measurement will be given by (107). What (107) provides is the statistical correlation between the 

initial measurement at 𝑡=0 and a subsequent measurement at 𝑡>0. As with violation of Bell’s 

inequalities, correlation does not imply causality. 

The proposed framework stipulates that the results of multiple measurements is the 

superposition of knowledge vectors, as in (97), with the second term in (98) providing the 

statistical correlation between two measurements. Therefore, QM formula (107,109) is a special 

case of the second term in (98) for the time-separated measurements. The expression for 

correlation between measurements at 𝑡=0 and at 𝑡>0 in device eigenspace representation 

within the proposed framework is: 

𝐶𝑜𝑟𝑟(𝑡,0)=
∑ℰ𝑖∙𝑐𝑜𝑠(𝛼𝑖−𝛽𝑖)𝑖

∑ℰ𝑖
=
∑ℰ𝑖∙𝑐𝑜𝑠(𝜔𝑖𝑡−𝜔𝑖0)𝑖

∑ℰ𝑖
=
∑ℰ𝑖∙𝑐𝑜𝑠(𝜔𝑖𝑡)𝑖

∑ℰ𝑖
 (110) 

And the expression for probability to find the system in original state: 

𝑃(𝑡)=(1+𝐶𝑜𝑟𝑟(𝑡,0))2⁄ =
1

2
+
1

2
∑ 𝑞𝑖∙𝑐𝑜𝑠(𝜔𝑖𝑡)

𝑖

 (111) 

, where probabilities 𝑞𝑖=ℰ𝑖∑ℰ𝑖⁄ =ℰ𝑖ℰ⁄ , with ℰ𝑖 given by (96) and 𝜔𝑖 introduced in (95). 

According to (89), for even 𝑀 at least one 𝜔𝑖 in (111) is 0. The summation in (111) is by 

eigenspace of the measuring device. The summation in (109) is by eigenstates of 𝑯-matrix. The 

probabilities of all eigenstates corresponding to the same eigenvalue of 𝑯-matrix can be added. 

Then (109) can be written as a sum over eigenvalues of 𝑯-matrix. In a case of two-level system, I 

connect (109) to (111) as follows: 

∑ 𝑃𝑗𝑃𝑘∙𝑐𝑜𝑠(
𝐸𝑗−𝐸𝑘

ℏ
𝑡)

𝑗,𝑘

=𝑃1
2+𝑃2

2+2𝑃1𝑃2𝑐𝑜𝑠(
𝐸2−𝐸1
ℏ

𝑡)=
1

2
+
𝑞1
2
+
𝑞2
2
𝑐𝑜𝑠(𝜔2𝑡) (112) 

, hence 𝑞1=(𝑃1−𝑃2)
2  ;   𝑞2=4𝑃1𝑃2. Thus the classical two-energy-level system corresponds 

to 𝑀=4 -cardinality statistical ensemble. 

In a way the presented model bears similarity to Heisenberg picture, where evolution in 

time is represented as a time-parameterized unitary transformation of observation basis, except 

that in Heisenberg picture the wave function, representing the underlying system, is considered 

static. In my model the observer is the basis from which the system is being observed. Both the 

observation basis and underlying system are associated with time through relations (1,22,78,91). 

The time sequence of underlying system is represented by statistical ensembles arranged by time 

progression rule (2,3).  The time dynamics of underlying system in thermodynamic limit is 

approximated by rather featureless exponential decline (24). The observational diversity is rooted 

not in a dynamics of underlying system but in a dynamics of observation basis. The equation (92) 

incorporates both. I propose (92) as a replacement for Schrödinger’s equation, for the following 

reasons: 

1. It has the Second Law of Thermodynamics (SLT) built-in, due to -1 terms in diagonal 

elements of 𝜱-matrix 



 

 

2. 𝜱-matrix is diagonal in representation of the measuring device eigenspaces. Therefore (92) 

incorporates measurement apparatus/observer into the equation. 

3. Equations (92) written for measurement devices with different eigenspaces are not unitarily 

equivalent, in effect reaffirming (Haag, 1955) theorem. 

4. According to Schrödinger’s equation a closed system (a system in an energy eigenstate) is 

static, in direct violation of the Second Law of Thermodynamics. A closed system is not 

static in the presented framework 

The Second Law of Thermodynamics (SLT) is the result of time progression of underlying 

system (Viznyuk, 2011), which is why SLT is not dependent on observation basis. QM is not 

compliant with SLT, which is evident from the fact that (Von Neumann, 1955) entropy is invariant 

under unitary transformations, including time propagator 𝑒𝑥𝑝(𝑖𝑯𝑡ℏ⁄) transformation. 

In preamble I have stated there is only present, and what is perceived as the past or the future 

are artifacts of the present state. How can that view be reconciled with time dynamics (92) of 

observables? To better understand the model, take a look at the hand watch. By noticing positions 

of its short and long hands I immediately know the positions of these hands at a given time in the 

past, and I readily assume the positions these hands will be at a given time in the future. Thus the 

present state of the watch incorporates the memory of the past, as well as the expectation of the 

future, given rotation frequencies (95). A watch with an hour and minute hands represents a 

knowledge vector for an underlying system of cardinality 𝑀=5. The hour hand represents the 

lower-energy component (96) of the knowledge vector within one 2-D eigenspace, and the minute 

hand represents higher-energy component (96) of the knowledge vector within another 2-D 

eigenspace. The underlying system of higher cardinality 𝑀, and the choice of observables can 

make time dynamics arbitrary intricate. 
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𝑁=1000; 𝑀=2; 

{𝑝𝑖}={
1

2
,
1

2
} 

𝑁=900;  𝑀=3; 

{𝑝𝑖}={
1

3
,
1

3
,
1

3
} 

𝑁=600;  𝑀=5; 

{𝑝𝑖}={
1

5
,
1

5
,
1

5
,
1

5
,
1

5
} 

𝑁=189;  𝑀=7; 

{𝑝𝑖}={
1

7
,
1

7
,
1

7
,
1

7
,
1

7
,
1

7
,
1

7
} 

ℇ 𝑔(ℰ;𝑁,{𝑝𝑖}) ℇ 𝑔(ℰ;𝑁,{𝑝𝑖}) ℇ 𝑔(ℰ;𝑁,{𝑝𝑖}) ℇ 𝑔(ℰ;𝑁,{𝑝𝑖}) 

0.000000 1 0.000000 1 0.000000 1 0.000000 1 

0.001998 2 0.003328 6 0.008299 20 0.036368 42 

0.007992 2 0.009972 3 0.016598 30 0.072735 210 

0.017982 2 0.009994 3 0.024828 30 0.107827 105 

0.031968 2 0.013311 6 0.024966 30 0.109103 140 

0.049951 2 0.023262 6 0.033127 20 0.110476 105 

0.071930 2 0.023328 6 0.033196 20 0.144194 420 

0.097905 2 0.029951 6 0.033265 20 0.145567 42 

0.127878 2 0.039846 3 0.041495 120 0.146843 420 

0.161847 2 0.040023 3 0.049521 20 0.180562 105 

0.199813 2 0.043196 6 0.050072 20 0.181935 840 

0.241778 2 0.043329 6 0.057889 60 0.183211 105 

0.287740 2 0.053246 6 0.058024 30 0.213187 140 

0.337700 2 0.063064 6 0.058162 30 0.215653 105 

0.391659 2 0.063396 6 0.058302 60 0.218302 1260 

0.449618 2 0.069775 6 0.066188 60 0.220951 105 

0.511576 2 0.069997 6 0.066393 30 0.223804 140 

0.577534 2 0.083198 6 0.066601 60 0.249555 210 

0.647492 2 0.089556 3 0.074556 60 0.250928 210 

0.721452 2 0.090154 3 0.074696 20 0.253394 630 

ώΧϐ ώΧϐ ώΧϐ ώΧϐ ώΧϐ ώΧϐ ώΧϐ ώΧϐ 

640.1354 2 952.5446 6 929.0220 30 333.7789 105 

644.8379 2 955.9414 3 929.4275 60 334.1844 210 

649.6592 2 956.3468 6 930.8138 20 335.5707 42 

654.6150 2 957.7331 6 934.0276 20 337.6184 140 

659.7260 2 962.0473 6 934.7208 60 338.3115 210 

665.0203 2 963.1459 6 935.8194 20 339.4101 42 

670.5388 2 968.1543 3 940.4212 30 342.8495 105 

676.3459 2 968.8474 6 941.1144 20 343.5426 42 

682.5595 2 974.9556 6 946.8165 20 348.0859 42 

689.4673 2 981.7580 3 953.2134 5 353.3277 7 

 

  Table 1 

ℰ, 𝑔(ℰ;𝑁,{𝑝𝑖}) value pairs calculated from (9) for four sets of parameters 𝑁,{𝑝𝑖} using 

(Yamanaka, Kawano, & Y., 2007) algorithm for finding partitions {𝑛𝑖} of integer 𝑁 into ≤𝑀 

parts. For each partition {𝑛𝑖} I calculated the value of ℰ and multiplicity 𝐷(ℰ;𝑁,𝑀) of 

multinomial coefficient in (4) (Viznyuk, OEIS sequence A210238, 2012). Finally, 

𝑔(ℰ;𝑁,{𝑝𝑖})=𝑆𝑈𝑀(𝐷) for each distinct value of ℰ produced the results for the table. I 

display the first 20 and the last 10 records from the table. 
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Figure 1 

Distinct values of ℰ in increasing order calculated from (9) with (5) and (1), using 

(Yamanaka, Kawano, & Y., 2007) algorithm for finding partitions (𝑛𝑖) of integer 𝑁 

into ≤𝑀 parts. The values of M and N are given on the graphs. The graphs represent 

complete set of distinct values of ℰ for the given values of M and N. The graphs 

demonstrate close to linear dependence of ℰ on “quantum number” in the vicinity of 

equilibrium ℰ=0 for statistical ensembles with M=3. This is the characteristic 

feature of statistical ensemble of cardinality M=3. Away from equilibrium and close 

to the boundary of hyper-plane (1) the linear behavior is violated.  
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Figure 2 

Distinct values of ℰ in increasing order calculated from (9) with (5) and (1), using 

(Yamanaka, Kawano, & Y., 2007) algorithm for finding partitions (𝑛𝑖) of integer 𝑁 

into ≤𝑀 parts. The values of M and N are given on the graphs. The graphs represent 

complete set of distinct values of ℰ for the given values of M and N. 
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Figure 3 

The total number 𝐿(𝑁,𝑀) of distinguishable states of statistical ensemble (curves 1, 3), 

and the total number ∑ 1{ℰ}  of distinct {ℰ} values (curves 2, 4) as functions of 𝑁 for two 

sets of probabilities (5): 
1. 𝐿(𝑁,𝑀) for 𝑀=5 
2. ∑ 1{ℰ}  for 𝑀=5 

3. 𝐿(𝑁,𝑀) for 𝑀=3 
4. ∑ 1{ℰ}  for 𝑀=3 

The values on curve 1 are by factor 𝑀!=5! greater than on curve 2 as 𝑁→∞. The 

values on curve 3 are by factor 𝑀!=3! greater than on curve 4 as 𝑁→∞. 

Using Stirling’s approximation for large 𝑁 in formula (13) one can see the curves grow 

proportionally to 𝑁𝑀−1 as 𝑁→∞ 
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Figure 4 

Function 𝜇(𝑁;{𝑝𝑖}) calculated for two sets of probabilities {𝑝𝑖}. 
Blue lines were calculated using exact formula (7). Red lines 

were calculated using thermodynamic limit approximation (17) 

 



 

 

  

Figure 5 

Values of √ℰ/𝑁 calculated as a function of 𝑛1/𝑁 with probabilities (5) for 

four sets of parameters: 

1. 𝑀=5; 𝑁=1000 

2. 𝑀=5; 𝑁=10 
3. 𝑀=2; 𝑁=1000 

4. 𝑀=2; 𝑁=4 
Blue lines were calculated using exact formula (9). Green dash lines were 

calculated using thermodynamic limit approximation (18). Red lines were 

calculated using quadratic form (23) approximation. For a given value of 𝑛1 
the values {𝑛𝑖>1} were distributed proportionally to corresponding 

probabilities {𝑝𝑖>1}. For large value of 𝑁=1000 the blue lines and green 

dash lines overlap closely as seen on curves 1 and 3. For small values of 𝑁 

the thermodynamic limit approximation is not accurate, and blue lines differ 

from green dash lines as seen on curves 2 and 4. Red lines overlap with blue 

lines in close proximity to minimum (10) of ℰ. 
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Figure 6 

Values of ln𝑃({𝑛𝑖};𝑁,{𝑝𝑖}) calculated as a function of 𝑛1 for 

𝑁=1000 and four sets of probabilities {𝑝𝑖} 

1. {𝑝𝑖}={
1

2
,
1

2
} 

2. {𝑝𝑖}={
1

10
,
9

10
} 

3. {𝑝𝑖}={
1

5
,
1

5
,
1

5
,
1

5
,
1

5
} 

4. {𝑝𝑖}={
4

5
,
1

20
,
1

20
,
1

20
,
1

20
} 

Blue lines were calculated using exact formula (4). Red lines 

were calculated using multivariate normal approximation (25). 

For the given value of 𝑛1 the distribution of values {𝑛𝑖>1} is 

proportional to corresponding probabilities {𝑝𝑖>1} 
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Figure 7 

The number of distinguishable states 𝐿(ℇ0;𝑁,𝑀) of statistical ensemble having 

ℇ≤ℇ0 as a function of ℇ0 for three sets of the parameters and probabilities (5): 

1. 𝑀=7; 𝑁=189 
2. 𝑀=5; 𝑁=600 
3. 𝑀=3; 𝑁=900 
4. 𝑀=2; 𝑁=1000 
Solid lines are the results of calculation using exact formulas (4) and (9). Dash 

lines represent thermodynamic limit approximation (34). The graphs 

demonstrate thermodynamic limit provides the better approximation the larger is 

the ratio 𝑁 𝑀⁄ . Solid lines level off close to ℇ𝑚𝑎𝑥 because density of states per 

interval 𝑑ℇ decreases near ℇ𝑚𝑎𝑥 due to non-spherical domain ℇ boundary of 

hyper-plane (1). The boundary is specified by 𝑛𝑖≥0 ∀  𝒊∈𝑮 

 

 

 

 

 

First three moments of ℰ plotted as dots vs. total number N of microstates for 

three sets of probabilities {𝑝𝑖}. The value of the third moment 𝜅3 is reduced by a 

factor of 2 to show its asymptotic behavior comparing with the first two moments.  
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Figure 8 

The mean value ℰ, the variance 𝜎ℰ
2, and the third moment 𝜅3 vs. total number N of 

microstates for three values of 𝑀 and probabilities (5). The graphs have been 

calculated using exact expressions (40-42) with probability mass function (4). The 

value of the third moment 𝜅3 is reduced by a factor of 2 to show its asymptotic 

behavior comparing with  ℰ and  𝜎ℰ
2. For each set of parameters, the curves approach 

(𝑀−1)/2 values as 𝑁∙𝑝𝑖→∞ 
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Figure 9 

Comparison of 𝑆0(𝑀) in (74) with ln𝑀 
 



 

 

 
  Figure 10 

Time evolution of observables {𝑧𝑖} corresponding to time dynamics of 

population numbers {𝑛𝑖} on Figure 11. Time dynamics has been calculated for 

ensemble of microstates with cardinality 𝑀=3 using time model (Viznyuk, 

2011). Observable values {𝑧𝑖} have been calculated using (78-81) with 

parameter 𝑊=50. The canonical variables {𝑥𝑖} are given by formula (22). The 

observable 𝑧1≡0 because transformation (78) is restricted to hyper-plane (1), 

where 𝑥1≡0. Effectively it models one-dimensional damped harmonic 

oscillator, with variables 𝑧2 and 𝑧3 representing generalized coordinate and 

momentum. The corresponding time dynamics of the energy for the system is 

shown on Figure 12. The proper time of the system is given by 𝑡=ln(𝑁). 
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Figure 11 

Time dynamics of population numbers {𝑛𝑖} calculated for ensemble of microstates 

with cardinality 𝑀=3 using time model (Viznyuk, 2011). The proper time of the 

system is given by 𝑡=ln(𝑁). The initial state has been randomly generated 

for 𝑁=104, corresponding to proper time 𝑡0=ln(10
4)=9.21 
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Figure 12 

Time dynamics of the energy ℇ corresponding to evolution of microstate 

population numbers {𝑛𝑖} on Figure 11. The proper time of the system is given by 

𝑡=ln(𝑁). Blue curve has been calculated using exact formula (9). Red curve has 

been calculated using thermodynamic approximation (23). As population 

numbers {𝑛𝑖} grow with time the thermodynamic approximation (23) becomes 

more accurate and red curve and blue curve closely overlap as (𝑁=∑𝑛𝑖)→∞  


