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In the beginning was the Word 

John 1:1 

And the Word became flesh, and dwelt among us 

John 1:14 

There are two complementary [1] science domains, irreconcilable in popular beliefs: quantum 

theory and classical laws. Yet quantum1, i.e., particle-like, features only arise upon measurement, 

i.e., upon extraction of classical information. Quantum theory assumes the dynamics of insinuated 

quantum state between measurements is unitary, i.e., wavelike2, commonly expressed via 

Schrödinger equation. Unitarity ensures conservation of information, as mandated by objectivity 

[2]. If, in Stern-Gerlach device oriented along z-axis, an atom was detected in spin ↑ state, a 

subsequent measurement with Stern-Gerlach device oriented along z-axis would again detect that 

atom in spin ↑ state [3]. The output from second device is same as the output from first, i.e., 

preparation device. To account for this, the evolution 𝝍 → (𝝍′ = 𝑼𝝍) of quantum state between 

measurements has to be unitary and diagonal in measuring device eigenbasis3: [𝑼𝑿] = 0; 𝑿 being 

an operator representing measuring device. Transformation 𝑼, commuting with 𝑿, conserves 

extracted by first measurement information, i.e., conserves knowledge that atom is in spin ↑ state. 

A natural question arises, how can measuring device impose transformation 𝑼 on quantum state 

prior to measurement? After initial measurement, how does atom know next measurement will be 

with commuting operator, and not with some other, non-commuting with 𝑼 operator? There is no 

sensible answer to this question compatible with quantum state concept. Admittedly, the notion of 

quantum state is a delusion. Not only it is logically malformed4, it contradicts empirical evidence, 

e.g., Alain Aspect’s [4] and similar experiments, that proved quantum state does not exist prior to 

measurement. What does not exist can’t be said to evolve. Transformation has to be ascribed to 

measuring device [eigenbasis] rather than to quantum state. The notion of quantum state is a 

misleading abstraction responsible for the conundrum of so-called “interpretations” of quantum 

mechanics. Unlike delusive quantum state, the device is a tangible and straightforward concept. 

The Heisenberg picture is the meaningful one, not Schrödinger’s. 

 
1 The numerous misconceptions in quantum mechanics may have a lot to do with buzzword abuse. The word quantum 

obfuscates the fact that it refers to discrete, yet classical, outcomes of the measurement. The domain of quantum 

mechanics deals with correlation of classical information extracted in different measurements. More appropriately it 

should be called knowledge mechanics (KM) [16] 
2 The century-old fallacy of “wave-particle duality” immediately falls apart, as particle-like properties relate strictly 

to outcomes of measurement, i.e., to an output of measuring device, while wave-like behavior relates to unitary 

dynamics before the measurement, i.e., at no point they co-exist as properties of any entity 
3 Were transformation 𝑼 diagonal instead in eigenbasis of preparation device, then 𝝍′ = 𝑼𝝍 = 𝑒𝑖𝜑𝝍. Here 𝜑 is a 

real-valued parameter; 𝝍 is the preparation device output eigenstate. Multiplication by a phase factor would result in 

probability of finding object in initial state 𝑃 = |⟨𝝍|𝝍′⟩|𝟐 ≡ 1, i.e., there would be no detectable dynamics. If 𝑼 is 

diagonal in measuring device eigenbasis {𝒌}, then 𝝍′ = 𝑼𝝍 = 𝑼 ∑ |𝒌⟩⟨𝒌|𝝍⟩𝒌 =  ∑ 𝑒𝑖𝜑𝑘|𝒌⟩⟨𝒌|𝝍⟩𝒌 ; 𝑃 = |⟨𝝍|𝝍′⟩|𝟐 =
∑ 𝑃𝑘𝑃𝑗 cos(𝜑𝑘 − 𝜑𝑗)𝒌,𝒋 , where 𝑃𝑘 = |⟨𝒌|𝝍⟩|2. In this case, we get the expected dynamics by parameters {𝜑𝑘} 
4 Assuming the existence of quantum state presupposes classical information (fact of existence), with no measurement 
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For a meaningful measurement, as that with mutually exclusive outcomes, device must be 

represented by a Hermitian operator with distinct eigenvalues. It ensures real-valued device 

readings (eigenvalues), and orthogonality of corresponding device output states (eigenstates), 

constituting device eigenbasis. Some challenges arise in this context: 

1. What drives unitary transformation of eigenbasis? Or, in orthodox formulation, unitary 

transformation of quantum state? Transformation in a real physical sense, rather than just 

mathematical substitution with no underpinning physics5 

2. Measurement converts quantum information6 into classical. The objective reality is 

represented by classical information, which can only be extracted by measurement. What 

effectuates the measurement and associated transition of information, that creates objective 

reality? Unitary dynamics, represented by, e.g., Schrödinger equation, does not involve 

transition, since unitarity preserves both quantum and classical information. The popular 

but deceitful math trick [5], to consider system entangled to environment, with subsequent 

tracing environment out, doesn’t answer this question. Tracing out environment implies 

measurement [of the environment part of the whole system] [6]. This challenge relates to 

so-called measurement problem [7], albeit orthodox formulation of the latter is based on 

the notion of wave function (quantum state) collapse, which derails understanding of the 

problem from get-go. The challenge is part of ancient question [8]: why is there something 

rather than nothing? 

3. Let 𝑀 be the cardinality of measurement outcomes in defining [9] representation of 

measurement operator. So far, no one has put a warrantable limit7 on 𝑀. Yet objectivity 

mandates measurement outcome to be encoded in 𝑂 = 2 observation basis, homomorphic 

to 3𝐷 information space, in order to represent objective reality [10]. How do outcomes of 

measurements in 𝑀-cardinality bases build up to 3𝐷 objective reality? 

The analysis of above challenges shall lay the foundation for a coherent picture of ontogenesis. 

I shall start with conceptual overview of measurement. Measurement is the extraction of 

classical information, by reading output of measuring device. The fact of reading is the 

measurement event. Device reading, a distinct real number, is the eigenvalue. The corresponding 

device output state is the eigenstate. Eigenstates are only distinguished by eigenvalues. Eigenstates 

are usually represented as 𝑀-dimensional eigenvectors, where 𝑀 is the cardinality of device 

readings. Input interface of measuring device is quantum8, and output interface is classical. 

Hermitian operator 𝑿𝑀, representing device with output cardinality 𝑀, is defined by 𝑀2 real 

parameters. Of which, 𝑀 parameters are eigenvalues, independent of device input. The rest 

(𝑀2 − 𝑀 ) are input parameters, defining device input state. 

 
5 New variables and new basis vectors must be de-facto measured observables and actual device outputs, in order to 

signify a real physical transformation 
6 As defined elsewhere [13], quantum information is the potential information, which could be materialized as real, 

i.e., classical information, by measurement 
7 There has not been a formal justification for confinement of standard model to 𝑈(1) × 𝑆𝑈(2) × 𝑆𝑈(3) symmetry 

group. Rather, it came up through efforts to fit experimental results, similar to the story with QED  [17] 
8 The adjective quantum simply indicates there is no reading (extraction of classical information) at input interface 



The expression for device eigenvalues and eigenvectors via 𝑀2 parameters is derived from 

Gell-Mann decomposition [9] of device operator. I shall first consider cardinality 𝑀 = 2 (qubit) 

operator. For 𝑀 = 2, eigenvalues 𝜖𝑢, 𝜖𝑣, and normalized eigenvectors 𝒖, 𝒗 are: 

 [𝜖𝑢  ;   𝜖𝑣] = [𝑡 + 𝑟   ;   𝑡 − 𝑟]     ;    𝑟 = √𝑥2 + 𝑦2 + 𝑧2

𝒖 = (
𝑟 + 𝑧

2𝑟
)

1 2⁄

∙ 𝑒𝑖𝜑𝑢 ∙ [1   ;    
𝑥 + 𝑖𝑦

𝑟 + 𝑧
]      ;      𝒗 = (

𝑟 + 𝑧

2𝑟
)

1 2⁄

∙ 𝑒𝑖𝜑𝑣 ∙ [− 
𝑥 − 𝑖𝑦

𝑟 + 𝑧
  ;   1] (1)

 

, where (𝑡, 𝒓) = (𝑡, 𝑥, 𝑦, 𝑧) are 4 real parameters of operator 𝑿𝑀=2 in Gell-Mann decomposition: 

 𝑿2 = 𝑡 ∙ 𝑰2 + (𝒓 ∙ 𝝈) = (
𝑡 + 𝑧 𝑥 − 𝑖𝑦

𝑥 + 𝑖𝑦 𝑡 − 𝑧
) = 𝜖𝑢|𝒖⟩⟨𝒖| + 𝜖𝑣|𝒗⟩⟨𝒗| (2) 

, where 𝝈 are Pauli matrices, and 𝑰2 = |𝒖⟩⟨𝒖| + |𝒗⟩⟨𝒗|. Eigenvalues 𝜖𝑢, 𝜖𝑣 are co-measurable with 

commuting observables 𝑡, 𝑟. In discussed above spin measurement, observable 𝑡 is correlative of 

time, and 𝑟 is correlative of location along 𝑧-axis where atom registers. Generally, for an operator 

of cardinality 𝑀 there are 𝑀 commuting observables, same as number of eigenvalues. Commuting 

observables and eigenvalues are complementary sets of measurement parameters. 

A commuting with 𝑿2 unitary transformation 𝑼2 is enacted by 𝑒𝑖𝜑𝑢, 𝑒𝑖𝜑𝑣 factors in (1), where 

𝜑𝑢, 𝜑𝑣 are real functions of measurement parameters. 𝑼2 has particularly simple form in 𝑿2 

eigenbasis: 

 𝑼2 = (
𝑈𝑢 0
0 𝑈𝑣

) = (𝑒𝑖𝜑𝑢 0
0 𝑒𝑖𝜑𝑣

) = 𝑒𝑖𝜑𝑢|𝒖⟩⟨𝒖| + 𝑒𝑖𝜑𝑣|𝒗⟩⟨𝒗|  

Outputs of measuring device, i.e., device eigenstates, are only distinguished by device readings. 

Therefore, eigenstate only transforms with corresponding eigenvalue, i.e., 𝜑𝑢, 𝜑𝑣 are functions of: 

𝜑𝑢 = 𝜑𝑢(𝜖𝑢) = 𝜑𝑢(𝑡 + 𝑟)     ;      𝜑𝑣 = 𝜑𝑣(𝜖𝑣) = 𝜑𝑣(𝑡 − 𝑟) (3) 

Expressions (3) answer first challenge: unitary transformation is effectuated by reading device 

output [2]. It may seem self-contradictory, since unitarity is mutually exclusive with measurement. 

The contradiction vanishes once unitary transformation is only viewed as mathematical 

interpolation from output state of preparation to output state of measuring device. There are no 

devices and no states in between. Out of infinitely many unitary transformations between two 

states, measuring device enacts transformation, which commutes with its eigenbasis [11], and has 

device readings as transformation parameters. Device readings only acquire definite values with 

measurement. Device itself is the generator of unitary transformation: 

 𝑼2 = 𝑒𝑥𝑝(𝑖𝑿2) = 𝑒𝑖𝜖𝑢|𝒖⟩⟨𝒖| + 𝑒𝑖𝜖𝑣|𝒗⟩⟨𝒗| (4) 

, i.e., functions 𝜑𝑢(𝜖𝑢) ≡ 𝜖𝑢 ; 𝜑𝑣(𝜖𝑣) ≡ 𝜖𝑣. Any other form of these functions requires additional 

information, beyond what is read from device output. 

Maximum amount of information which can be extracted from qubit per measurement event9 

is 1 𝑏𝑖𝑡 [12], if output state 𝝆𝑝 of preparation is orthogonal to output state 𝝆𝑚 of measuring device. 

The orthogonality condition 𝑇𝑟(𝝆𝑝𝝆𝑚) = 0 implies output of measuring device is not correlated10 

 
9 Not to mix in so-called superdense coding [15] schemes which actually involve two-or-more qubit measurement 
10 The scalar product of [normalized] vectors, has a meaning of correlation coefficient 



with output of preparation device, i.e., no information is shared between devices, which signifies 

unconditional measurement. Otherwise, the amount of information extracted from output of 

measuring device is reduced by the amount of shared information11; their sum in any case not to 

exceed 1 𝑏𝑖𝑡 𝑒𝑣𝑒𝑛𝑡⁄ . In measuring device eigenbasis: 

𝝆𝑝 = (𝝆𝑝)
𝑢𝑢

|𝒖⟩⟨𝒖| + (𝝆𝑝)
𝑣𝑢

|𝒖⟩⟨𝒗| + (𝝆𝑝)
𝑢𝑣

|𝒗⟩⟨𝒖| + (𝝆𝑝)
𝑣𝑣

|𝒗⟩⟨𝒗| 

𝝆𝑚 = 𝑼2
†𝝆𝑝𝑼2 = 

= (𝝆𝑝)
𝑢𝑢

|𝒖⟩⟨𝒖| + 𝑒𝑖(𝜖𝑣−𝜖𝑢) ∙ (𝝆𝑝)
𝑣𝑢

|𝒖⟩⟨𝒗| + 𝑒𝑖(𝜖𝑢−𝜖𝑣)(𝝆𝑝)
𝑢𝑣

|𝒗⟩⟨𝒖| +(𝝆𝑝)
𝑣𝑣

|𝒗⟩⟨𝒗| 

 𝑇𝑟(𝝆𝑝𝝆𝑚) = (𝝆𝑝)
𝑢𝑢

2
+ (𝝆𝑝)

𝑣𝑣

2
+ 2(𝝆𝑝)

𝑢𝑣
(𝝆𝑝)

𝑣𝑢
cos(𝜖𝑢 − 𝜖𝑣)  

Given 0 ≤ [𝑑𝑒𝑡(𝝆𝑝) = (𝝆𝑝)
𝑢𝑢

(𝝆𝑝)
𝑣𝑣

− (𝝆𝑝)
𝑢𝑣

(𝝆𝑝)
𝑣𝑢

] ≤ 1 4⁄ ; −1 ≤ cos(𝜖𝑢 − 𝜖𝑣) ≤ 1, for 

𝑇𝑟(𝝆𝑝𝝆𝑚) = 0, one must have: 𝑑𝑒𝑡(𝝆𝑝) = 0; (𝝆𝑝)
𝑢𝑢

= (𝝆𝑝)
𝑣𝑣

= 1 2⁄ ; and cos(𝜖𝑢 − 𝜖𝑣) ≡

cos(2𝑟) = −1; with two principal solutions: 𝑟 = ±𝜋 2⁄ , corresponding to output eigenstates 𝒖, 𝒗, 

of standard nomenclature spin ±1 2⁄ . The extraction of 1 𝑏𝑖𝑡 from a qubit is co-measurable to 

observable 𝑟 acquiring absolute value 𝜋 2⁄  𝑟𝑎𝑑𝑖𝑎𝑛𝑠, i.e., 1 𝑏𝑖𝑡 ≡ 𝜋 2⁄  𝑟𝑎𝑑𝑖𝑎𝑛𝑠. 𝐵𝑖𝑡 is the natural 

unit of an observable value. 𝑅𝑎𝑑𝑖𝑎𝑛 only appeared because of the choice of exponent base in (4). 

Entropy is the amount of extracted classical information. The amount of information extracted 

by measuring device is the difference in entropies of measuring and preparation device outputs: 

 ℒ = 𝐻𝑚 − 𝐻𝑝         (𝑏𝑖𝑡𝑠/𝑒𝑣𝑒𝑛𝑡) (5) 

For measuring device to extract 1 (𝑏𝑖𝑡/𝑒𝑣𝑒𝑛𝑡) from a qubit, the preparation device output has 

to have entropy 𝐻𝑝 = 0,12 and measuring device output has to have entropy 𝐻𝑚 =

−𝑇𝑟(𝝆𝑚 log2 𝝆𝑚) = 1 (𝑏𝑖𝑡/𝑒𝑣𝑒𝑛𝑡), i.e., the output of measuring device has to be a mixed state 

with equal outcome probabilities: (𝝆𝑚)𝑢𝑢 = (𝝆𝑚)𝑣𝑣 = 1 2⁄  [12], and zero off-diagonal terms. 

Before I proceed to second challenge, to answer what effectuates the measurement itself, I 

have to emphasize distinction between the verbs effectuate vs. cause. The former looks for a 

definite value of observable, whose operator encodes the fact of measurement. The latter asks for 

information pre-determining the fact of measurement. If no prior measurement produced that 

information, the cause has no objective answer. Conversely, a definite value of observable whose 

operator encodes the fact of prior measurement, would signify the cause. 

The measurement is not fait accompli unless obtained information persists in some [encoded] 

form. Device 𝑿2 does not encode13 observable 𝑡, reflecting empirical fact that one can’t determine 

object’s age from object itself. That information is encoded separately, in some form of historical 

record. Hilbert space of a device, which encodes 𝑡, thus producing historical record, has to include, 

and extend beyond, the Hilbert space of 𝑿2. In terms of observables (𝑡, 𝑟): 

𝑿2 = 𝑟 ∙ (|𝒖⟩⟨𝒖| − |𝒗⟩⟨𝒗|) + 𝑡 ∙ (|𝒖⟩⟨𝒖| + |𝒗⟩⟨𝒗|) = 𝑟 ∙ 𝑹 + 𝑡 ∙ 𝑰2 (6) 

 
11 One can show that in conditional measurement 𝑇𝑟(𝝆𝑝𝝆𝑚) ≠ 0 
12 Which means the output 𝝆𝑝 of preparation device has to be one of its eigenstates 
13 Operator 𝑡 ∙ 𝑰2 in (2) does not encode observable 𝑡 because 𝑡 ∙ 𝑰2 output is same for any input. The value of 𝑡 can 

only be encoded by an operator, whose output is correlative of the fact of measurement, and the fact of no measurement 

by 𝑡 ∙ 𝑰2 operator 



, where 𝑹 = |𝒖⟩⟨𝒖| − |𝒗⟩⟨𝒗|. Observable 𝑡 is encoded by device 𝑿𝑀=3, with (𝒖, 𝒗, 𝒘) eigenbasis: 

𝑿3 = 𝑟 ∙ 𝑹 + 𝑡 ∙ 𝑻 + 𝛾 ∙ 𝑰3   ;    𝑤ℎ𝑒𝑟𝑒   𝑰3 = 𝑰2 + |𝒘⟩⟨𝒘| (7) 

The part of 𝑿3, which encodes 𝑡, is traceless operator 𝑻 = 𝑰2 − 2|𝒘⟩⟨𝒘|, orthogonal to 𝑹:  

𝑇𝑟(𝑹𝑻) = 0. The positive +1 eigenvalue of operator 𝑻 in (7), corresponding to eigenstates 𝒖, 𝒗, 

indicates the completed measurement by 𝑿2. The negative −2 eigenvalue of operator 𝑻, 

corresponding to eigenstate 𝒘, indicates no measurement by 𝑿2. 

Orthogonality 𝑇𝑟(𝝆𝑝𝝆𝑚) = 0 of output 𝝆𝑝 of preparation, and output 𝝆𝑚 of measuring device, 

expressed in terms of output states |𝝍𝑝⟩ = 𝑢 ∙ |𝒖⟩ + 𝑣 ∙ |𝒗⟩ + 𝑤 ∙ |𝒘⟩; |𝝍𝑚⟩ = 𝑼3|𝝍𝑝⟩ = 𝑢 ∙

𝑒𝑖(𝑡+𝑟) ∙ |𝒖⟩ + 𝑣 ∙ 𝑒𝑖(𝑡−𝑟) ∙ |𝒗⟩ + 𝑤 ∙ 𝑒−2𝑖𝑡 ∙ |𝒘⟩, with14 |𝑢|2 = |𝑣|2 = |𝑤|2 = 1 𝑀⁄ = 1 3⁄ , leads 

to the following conditions on definite values of observables 𝑡, 𝑟: 

⟨𝝍𝑝|𝝍𝑚⟩ = ⟨𝝍𝑝|𝑼3|𝝍𝑝⟩ = 0   ⟹   𝑒𝑖(𝑡+𝑟) + 𝑒𝑖(𝑡−𝑟) + 𝑒−2𝑖𝑡 = 0    ⟹

2 cos(𝑟) + cos(3𝑡) = 0       ;      sin(3𝑡) = 0 (8)
 

Three principal solutions15 of (8), corresponding to output eigenstates 𝒖, 𝒗, 𝒘, are: (𝑡, 𝑟)𝑢 =
(𝜋 3⁄ , 𝜋 3⁄ ); (𝑡, 𝑟)𝑣 = (𝜋 3⁄ , −𝜋 3⁄ ); (𝑡, 𝑟)𝑤 = (−𝜋 3⁄ , ~ 𝜋 3⁄ ), where ~ is undefined sign, with 

special algebra rules16. The undefined sign of an observable occurs when eigenvalue does not 

include that observable. E.g., 𝜖𝑤 = −2𝑡 does not include 𝑟. The element of (𝑡, 𝑟)𝑤, corresponding 

to observable 𝑟, has absolute value 𝜋 3⁄  known from (8), and undefined sign. The sign is undefined 

because 𝜖𝑤 device reading is mutually exclusive with outputs 𝒖, 𝒗 which determine the sign of 𝑟. 

Eigenvalue is the sum of elements of principal solution17: 𝜖𝑢 = 𝜋 3⁄ + 𝜋 3⁄ = 2𝜋 3⁄  ;  𝜖𝑣 = 𝜋 3⁄ −

𝜋 3⁄ = 0 ;   𝜖𝑤 = −𝜋 3⁄ + ~𝜋 3⁄ = −2𝜋 3⁄  𝑟𝑎𝑑𝑖𝑎𝑛𝑠, or (𝜖𝑢, 𝜖𝑣, 𝜖𝑤) = (4 3⁄ , 0, −4 3⁄ ) 𝑏𝑖𝑡𝑠. 

The measurement event by 𝑿3 device, in unconditional measurement, sets absolute value of 

observable 𝑟 to 𝜋 3⁄  𝑟𝑎𝑑𝑖𝑎𝑛𝑠, not 𝜋 2⁄  𝑟𝑎𝑑𝑖𝑎𝑛𝑠 as does measurement event by 𝑿2 device in (6). 

This is because operator 𝑟 ∙ 𝑹 in (7) acts in 2 out of 3 measurement events. The amount 𝐻𝑟 of 

information, extracted per event by 𝑟 ∙ 𝑹 operator in (7), is 2 3⁄  of the amount extracted by 𝑟 ∙ 𝑹 

operator in (6), i.e.: 

                                      𝐻𝑟 = (2 3⁄ ) ∙ 𝜋 2⁄ = 𝜋 3⁄  𝑟𝑎𝑑𝑖𝑎𝑛𝑠 𝑒𝑣𝑒𝑛𝑡⁄ = 2 3⁄  𝑏𝑖𝑡𝑠 𝑒𝑣𝑒𝑛𝑡⁄  

The amount of information extracted by 𝑡 ∙ 𝑻 operator in (7), from Shannon’s [12] formula, is: 

𝐻𝑡 = −
2

3
log2

2

3
−

1

3
log2

1

3
= (log2 3 −

2

3
)   𝑏𝑖𝑡𝑠/𝑒𝑣𝑒𝑛𝑡 

The amount of information extracted by 𝛾 ∙ 𝑰3 operator in (7) is 𝐻𝛾 = 0. As expected, from 

Shannon’s entropy [12], the amount of information extracted by 𝑿3 device in unconditional 

measurement is: 𝐻3 = 𝐻𝑟 + 𝐻𝑡 + 𝐻𝛾 = log2(𝑀 = 3)  𝑏𝑖𝑡𝑠/𝑒𝑣𝑒𝑛𝑡. 

 
14 Unconditional measurement mandates equal probability of device outputs 
15 Other solutions, e.g., (2𝜋 3⁄ , 2𝜋 3⁄ ); (0, 2𝜋 3⁄ ) are obtained by adding or subtracting principal solutions: 
(2𝜋 3⁄ , 2𝜋 3⁄ ) =  (𝑡, 𝑟)𝑢 + (𝑡, 𝑟)𝑢;  (0, 2𝜋 3⁄ ) = (𝑡, 𝑟)𝑢 + (𝑡, 𝑟)𝑤=(𝑡, 𝑟)𝑢 − (𝑡, 𝑟)𝑣; (0, −2𝜋 3⁄ ) = (𝑡, 𝑟)𝑣 + (𝑡, 𝑟)𝑤 
16The rules are:   ∀ 𝑡 ≥ 0, 𝑟 ≥ 0:     𝑡 + ~𝑟 = 𝑡 + 𝑟   ;    −𝑡 + ~𝑟 = −𝑡 − 𝑟  ;   𝑡 − ~𝑟 = 𝑡 − 𝑟  ;   −𝑡 − ~𝑟 = −𝑡 + 𝑟. 

Variable with undefined sign acquires sign of preceding variable in addition and subtraction expressions 
17 In standard nomenclature, eigenvalues of 𝑿3 would be expressed as: 𝜖 = 𝜋 ∙ (𝑌 + 𝐼3 ∙ 2 3⁄ ) 𝑟𝑎𝑑𝑖𝑎𝑛𝑠, where 𝐼3 is 

isospin and 𝑌 is hypercharge [19]; (𝑌, 𝐼3)𝑢 = (1 3⁄ , 1 2⁄ ); (𝑌, 𝐼3)𝑣 = (1 3⁄ , − 1 2⁄ ); (𝑌, 𝐼3)𝑤 = (− 2 3⁄ , 0). Another 

quantum number called charge is defined as 𝑄 = 𝐼3 + 𝑌 2⁄  



Just as 𝑿2 device does not encode observable 𝑡, device 𝑿3 does not encode 𝛾. The value of 𝛾 

would be encoded by device 𝑿4, with eigenbasis (𝒖, 𝒗, 𝒘, 𝒒): 

𝑿4 = 𝑟 ∙ 𝑹 + 𝑡 ∙ 𝑻 + 𝛾 ∙ 𝜰 + 𝜆 ∙ 𝑰4     ;     𝑤ℎ𝑒𝑟𝑒   𝑰4 = 𝑰3 + |𝒒⟩⟨𝒒| (9) 

Observable 𝛾 is encoded by traceless operator 𝜰 = 𝑰3 − 3 ∙ |𝒒⟩⟨𝒒|, orthogonal to 𝑹 and 𝑻: 

𝑇𝑟(𝑹𝜰) = 0;  𝑇𝑟(𝑻𝜰) = 0. Orthogonality 𝑇𝑟(𝝆𝑝𝝆𝑚) = 0 for 𝑿4, expressed in terms of output 

states |𝝍𝑝⟩ = 𝑢 ∙ |𝒖⟩ + 𝑣 ∙ |𝒗⟩ + 𝑤 ∙ |𝒘⟩ + 𝑞 ∙ |𝒒⟩; |𝝍𝑚⟩ = 𝑼4|𝝍𝑝⟩ = 𝑢 ∙ 𝑒𝑖(𝛾+𝑡+𝑟) ∙ |𝒖⟩ + 𝑣 ∙

𝑒𝑖(𝛾+𝑡−𝑟) ∙ |𝒗⟩ + 𝑤 ∙ 𝑒𝛾−2𝑖𝑡 ∙ |𝒘⟩ + 𝑞 ∙ 𝑒−3𝑖𝛾 ∙ |𝒒⟩, with |𝑢|2 = |𝑣|2 = |𝑤|2 = |𝑞|2 = 1 𝑀⁄ = 1 4⁄  

leads to the following conditions on definite values of observables 𝛾, 𝑡, 𝑟: 

⟨𝝍𝑝|𝝍𝑚⟩ = ⟨𝝍𝑝|𝑼4|𝝍𝑝⟩ = 0   ⟹  𝑒𝑖(𝛾+𝑡+𝑟) + 𝑒𝑖(𝛾+𝑡−𝑟) + 𝑒𝑖(𝛾−2𝑡) + 𝑒−3𝑖𝛾 = 0    ⟹

2 cos(𝑟) + cos(3𝑡) + cos(𝑡 + 4𝛾) = 0   ;     sin(3𝑡) + sin(𝑡 + 4𝛾) = 0 (10)
 

The principal solutions of (10), corresponding to output eigenstates 𝒖, 𝒗, 𝒘, 𝒒, are: (𝛾, 𝑡, 𝑟)𝑢 =

(𝜋 4⁄ , 𝜋 4⁄ , 𝜋 4⁄ ); (𝛾, 𝑡, 𝑟)𝑣 = (𝜋 4⁄ , 𝜋 4⁄ , −𝜋 4⁄ ); (𝛾, 𝑡, 𝑟)𝑤 = (𝜋 4⁄ , −𝜋 4⁄ , ~𝜋 4⁄ ); 

(𝛾, 𝑡, 𝑟)𝑞 = (−𝜋 4⁄ , ~𝜋 4⁄ , ~𝜋 4⁄ ). The corresponding eigenvalues are18: (𝜖𝑢, 𝜖𝑣, 𝜖𝑤, 𝜖𝑞) =

(3𝜋 4⁄ , 𝜋 4,⁄ −𝜋 4,⁄ −3𝜋 4⁄ ) 𝑟𝑎𝑑𝑖𝑎𝑛𝑠, or (𝜖𝑢, 𝜖𝑣, 𝜖𝑤, 𝜖𝑞) = (3 2⁄ , 1 2,⁄ −1 2,⁄ −3 2⁄ ) 𝑏𝑖𝑡𝑠. 

The measurement event by 𝑿4 device, in unconditional measurement, sets absolute value of 

observable 𝑟 to 𝜋 4⁄  𝑟𝑎𝑑𝑖𝑎𝑛𝑠, not 𝜋 2⁄  𝑟𝑎𝑑𝑖𝑎𝑛𝑠 as does measurement event by 𝑿2 device in (6). 

This is because operator 𝑟 ∙ 𝑹 in (9) acts in 2 out of 4 measurement events, so the amount 𝐻𝑟 of 

information extracted per event by 𝑟 ∙ 𝑹 operator in (9) is 1 2⁄  of the amount extracted by 𝑟 ∙ 𝑹 

operator in (6), i.e.: 

𝐻𝑟 = (1 2⁄ ) ∙ 𝜋 2⁄ = 𝜋 4⁄  𝑟𝑎𝑑𝑖𝑎𝑛𝑠 𝑒𝑣𝑒𝑛𝑡⁄ = 1 2⁄  𝑏𝑖𝑡𝑠 𝑒𝑣𝑒𝑛𝑡⁄  

The amount of information extracted by 𝑡 ∙ 𝑻 operator in (9) is 3 4⁄  of the amount extracted by 

𝑡 ∙ 𝑻 operator in (7), because operator 𝑡 ∙ 𝑻 in (9) acts in 3 out of 4 measurement events: 

𝐻𝑡 =
3

4
∙ (log2 3 −

2

3
)   𝑏𝑖𝑡𝑠/𝑒𝑣𝑒𝑛𝑡 

The amount of information extracted by 𝛾 ∙ 𝜰 operator in (9), from Shannon’s formula, is: 

𝐻𝛾 = −
3

4
log2

3

4
−

1

4
log2

1

4
= (2 −

3

4
log2 3)   𝑏𝑖𝑡𝑠/𝑒𝑣𝑒𝑛𝑡 

The amount of information extracted by 𝜆 ∙ 𝑰4 operator in (9) is 𝐻𝜆 = 0. As expected, from 

Shannon’s entropy [12], the amount of information extracted by 𝑿4 device in unconditional 

measurement is 𝐻4 = 𝐻𝑟 + 𝐻𝑡 + 𝐻𝛾 + 𝐻𝜆 = log2(𝑀 = 4) = 2 𝑏𝑖𝑡𝑠/𝑒𝑣𝑒𝑛𝑡. 

In general, for 𝑿𝑀 device, the principal solutions for definite values of commuting observables 

are of the form (… , 𝛾, 𝑡, 𝑟) = (… , 𝜋 𝑀⁄ , −𝜋 𝑀⁄ , ~𝜋 𝑀⁄ , … ). Device readings take discrete values 

from −𝜋(𝑀 − 1) 𝑀⁄  to 𝜋(𝑀 − 1) 𝑀⁄  with interval 2𝜋 𝑀⁄  𝑟𝑎𝑑𝑖𝑎𝑛𝑠. Amount of information 

extracted by 𝑿𝑀 device in unconditional measurement is 𝐻𝑀 = log2(𝑀)  𝑏𝑖𝑡𝑠/𝑒𝑣𝑒𝑛𝑡. 

 
18 With quantum numbers from standard nomenclature, eigenvalues of 𝑿4 would be expressed as: 𝜖 = 𝜋 ∙
(ℂ + 𝑌 ∙ 3 4⁄ + 𝐼3 2⁄ ) 𝑟𝑎𝑑𝑖𝑎𝑛𝑠, where ℂ could be called hypercurrent, related to charm 𝐶 = ℂ + 1 4⁄ ; (ℂ, 𝑌, 𝐼3)𝑢 =
(1 4⁄ , 1 3⁄ , 1 2⁄ ); (ℂ, 𝑌, 𝐼3)𝑣 = (1 4⁄ , 1 3⁄ , − 1 2⁄ ); (ℂ, 𝑌, 𝐼3)𝑤 = (1 4⁄ , − 2 3⁄ , 0), (ℂ, 𝑌, 𝐼3)𝑞 = (− 3 4⁄ , 0,0) 



Operator 𝑡 ∙ 𝑻 in (7) creates historical record of measurement by 𝑟 ∙ 𝑹 operator. In discussed 

above spin measurement, the extracted by 𝑡 ∙ 𝑻 information is encoded as, e.g., position of clock 

hands pointing to time of spin measurement. Without this knowledge, the extracted by 𝑟 ∙ 𝑹 

information would represent an undated still picture, e.g., of the spots, where spin-separated atomic 

beams hit detector in Stern-Gerlach apparatus. 

Similarly, operator 𝛾 ∙ 𝜰 in (9) encodes the fact of creation by 𝑡 ∙ 𝑻 of historical record of 

measurement. The extracted by 𝛾 ∙ 𝜰 information represents the passage of time knowledge. 

Without this knowledge, the extracted information is like timestamped movie frame, showing a 

proverbial Zeno’s arrow frozen in flight19. The device’s 𝛾 ∙ 𝜰 operator effectuates the motion, i.e., 

it extracts information conveying knowledge that, in fact, the object is moving. 

The answer on the second posed challenge is: measurement is effectuated by acquisition of a 

definite value by an observable, whose definite value signifies the fact of measurement20. 

Observable 𝑡 acquiring definite value effectuates the measurement by device 𝑿2. The value of 

𝑡 is encoded by 𝑡 ∙ 𝑻 operator of encompassing 𝑿3 device. E.g., photodetector 𝑟 ∙ 𝑹 registers a 

photon at location 𝑟 at time 𝑡, recorded by a clock 𝑡 ∙ 𝑻. The fact of registration of a photon, 

recorded by the clock 𝑡 ∙ 𝑻, effectuates the measurement by photodetector 𝑟 ∙ 𝑹. To find out what 

effectuates the measurement by the clock 𝑡 ∙ 𝑻, i.e., to find out if registration of photons takes 

place, we do not need to know time 𝑡 of photon registration. We only need to know current in 

photodetector circuit. The facts of measurement by clock 𝑡 ∙ 𝑻 manifest as current in photodetector 

circuit, i.e., measurement by 𝑿3 device is effectuated by the current, encoded by 𝛾 ∙ 𝜰 operator of 

encompassing 𝑿4 device as observable 𝛾. In turn, the facts of measurement by 𝑿4 device manifest 

as a thing to be called current of currents, encoded by encompassing 𝑿5 device as observable 𝜆. 

Information extracted by device 𝑿𝑀 can’t tell if there is a measurement by encompassing 

device 𝑿𝑀+1. The derived earlier principle [13] states, no finite set of objective facts can explain 

itself. The above adds to this principle: no finite set of objective facts can tell, if there exists an 

explanation of these facts outside of the set. The second addition to principle [13] is: no finite set 

of objective facts can explain the fact of its own existence. An answer to old question why is there 

something rather than nothing21 is bound to involve circular reasoning. 

The fact of measurement by device 𝑿𝑀, i.e., the fact of existence of classical information 

produced by 𝑿𝑀, is encoded by encompassing device 𝑿𝑀+1. As transpired above with examples 

of 𝑿2, 𝑿3, 𝑿4 devices, the encoding of the fact of measurement by device 𝑿𝑀 is done by an 

operator of device 𝑿𝑀+1, whose eigenvalues signify the fact of measurement, and the fact of no 

measurement by 𝑿𝑀. Consequently, the fact of existence of a thing can only be encoded as classical 

information by encompassing measurement if there is also “the thing does not exist” outcome. 

 
19 Zeno of Elea: “What is in motion moves neither in the place it is nor in one in which it is not”. (Diogenes 

Laertius Lives of Famous Philosophers, ix.72. Knowing arrow’s coordinates, one can’t tell if arrow is moving 
20 To determine if the measurement took place we do not need to know where did atom hit detector in Stern-Gerlach 

apparatus. We only need to know time 𝑡 when detector clicked. Definite value of 𝑡 signifies the fact of measurement 
21 The question presumes the existence of classical information representing answer, i.e., it presupposes the existence 

of something. Conversely, if there was nothing, rather than something, the question why is there nothing would be ill-

posed, as it looks for information under condition that no information exists 



I now proceed to third challenge. I shall show how 𝑿3 and 𝑿4 device outputs are encoded in, 

respectively, 2-qubit and 3-qubit basis, with generalization to 𝑿𝑀 device and (𝑁 = 𝑀 − 1)-qubit 

states. I also show the encoding in 𝑁-qubit basis (3𝐷 space) is the only possibility for extracted 

information to persist/be conserved. 

Hilbert space of 𝑁-qubit has subspaces, invariant under 𝑆𝑈(2) transformation [14]. The 𝑁-

qubit which encodes output of 𝑿𝑀 device has cardinality of its largest invariant subspace matching 

cardinality of 𝑿𝑀 device [10]: 

𝑀 =
(𝑁 + 2 − 1)!

𝑁! ∙ (2 − 1)!
= 𝑁 + 1 

The largest invariant subspace of 𝑁-qubit is that of a completely symmetric multiplet. The 

complete symmetry is required, because encoding by 𝑁-qubit has to be independent of qubit order, 

as output of measuring device does not contain qubit ordering information. 

Eigenstates 𝒖, 𝒗, 𝒘 of 𝑿3 device are projected onto (𝑁 = 2)-qubit eigenstates as: 

(
𝒖
𝒗
𝒘

) ⟹ (
𝟎𝟎

(𝟎𝟏 + 𝟏𝟎) √2⁄
𝟏𝟏

) (11) 

, where 𝟎 and 𝟏 are single qubit eigenstates. From group theory: 2 ⊗ 2 = 3 ⊕ 1, i.e., Hilbert 

space of 2-qubit has two invariant subspaces, of cardinality 3 and 1 [14]. Cardinality 3 subspace 

(triplet) with eigenstates on the right side of (11) matches cardinality of 𝑿3 device. Cardinality 1 

subspace is spawned by singlet (𝟎𝟏 − 𝟏𝟎) √2⁄  with eigenvalue 𝜖01 = 𝜖10 = 0. The amount of 

information which can be extracted from singlet is log2 1=0. There are no transitions within 

singlet’s subspace. With a basis change singlet transforms into itself: 

𝟎 = (𝑨 + 𝑩) √2⁄     ;      𝟏 = (𝑨 − 𝑩) √2⁄            ⟹ 

(𝟎𝟏 − 𝟏𝟎) √2⁄ = [(𝑨𝑨 − 𝑨𝑩 + 𝑩𝑨 − 𝑩𝑩) 2⁄ − (𝑨𝑨 + 𝑨𝑩 − 𝑩𝑨 − 𝑩𝑩) 2⁄ ] √2⁄ = (𝑩𝑨 − 𝑨𝑩) √2⁄  

, i.e., singlet is same in new 𝑨, 𝑩 basis, as in old 𝟎, 𝟏 basis. On other hand, any state of the triplet 

on the right side of (11) transform into superposition of triplet’s states: 

𝟎𝟎 = (𝑨𝑨 + 𝑨𝑩 + 𝑩𝑨 + 𝑩𝑩) 2⁄ = [(𝑨𝑨 + 𝑩𝑩) √2⁄ + (𝑨𝑩 + 𝑩𝑨) √2⁄ ] √2⁄  

(𝟎𝟏 + 𝟏𝟎) √2⁄ = [(𝑨𝑨 − 𝑨𝑩 + 𝑩𝑨 − 𝑩𝑩) 2⁄ + (𝑨𝑨 + 𝑨𝑩 − 𝑩𝑨 − 𝑩𝑩) 2⁄ ] √2⁄ = (𝑨𝑨 − 𝑩𝑩) √2⁄  

𝟏𝟏 = (𝑨𝑨 − 𝑨𝑩 − 𝑩𝑨 + 𝑩𝑩) 2⁄ = [(𝑨𝑨 + 𝑩𝑩) √2⁄ − (𝑨𝑩 + 𝑩𝑨) √2⁄ ] √2⁄  

The condition on definite value of observable 𝑟, signifying transition between orthogonal states of 

the triplet, results in: 

𝑒𝑖𝑟𝑒𝑖𝑟 + 𝑒𝑖𝑟𝑒−𝑖𝑟 + 𝑒−𝑖𝑟𝑒−𝑖𝑟 = 0    ⟹     2 cos(2𝑟) + 1 = 0   ⟹    𝑟 = ± 𝜋 3⁄  𝑟𝑎𝑑𝑖𝑎𝑛𝑠 

and eigenvalues: (𝜖00, (𝜖01 = 𝜖10), 𝜖11) = (2𝑟, (𝑟 − 𝑟), −2𝑟) = (2𝜋 3⁄ , 0, −2𝜋 3⁄ ). Eigenvalues 

of triplet match eigenvalues (𝜖𝑢, 𝜖𝑣, 𝜖𝑤) of 𝑿3 device, obtained from (8). Classical information 

extracted from output of 𝑿3 device is identical to information extracted from triplet on the right 

side of (11), as device outputs are only distinguished by device readings. 

As noted in the beginning, the number of input parameters (input cardinality) of 𝑿𝑀 device is 

𝑀2 − 𝑀. Therefore, log2(𝑀2 − 𝑀 ) 𝑏𝑖𝑡𝑠 is needed to encode [the input state of] 𝑿𝑀 device, i.e., 



log2(𝑀2 − 𝑀 ) 𝑏𝑖𝑡𝑠 is the amount of [quantum] information 𝑿𝑀 device stores internally. 𝑿2 

(qubit) input cardinality 22 − 2 = 2 is same as output cardinality. Amount of information 

(log2 2 = 1 𝑏𝑖𝑡 𝑒𝑣𝑒𝑛𝑡⁄ ) which can be extracted from qubit in unconditional measurement is same 

as amount needed to encode it. This conclusion also applies to 𝑁-qubit, as input cardinality 𝑀 =

𝑁 + 1 of 𝑁-qubit is same as its output cardinality. The amount of information, extracted from 𝑿3 

device in unconditional measurement 𝐻3 = log2 3 𝑏𝑖𝑡𝑠 𝑒𝑣𝑒𝑛𝑡⁄  matches log2(𝑁 + 1) =

log2 3  𝑏𝑖𝑡𝑠 which can be encoded in, and extracted from, 2-qubit. 

Continuing to 𝑿4 device: it takes (𝑁 = 𝑀 − 1 = 3)-qubit to encode output of 𝑿4 device, 

within cardinality 4 (quadruplet) invariant subspace. The condition on definite value of observable 

𝑟, acquired in transition between orthogonal states of quadruplet, is 

𝑒𝑖𝑟𝑒𝑖𝑟𝑒𝑖𝑟 + 𝑒𝑖𝑟𝑒𝑖𝑟𝑒−𝑖𝑟 + 𝑒𝑖𝑟𝑒−𝑖𝑟𝑒−𝑖𝑟 + 𝑒−𝑖𝑟𝑒−𝑖𝑟𝑒−𝑖𝑟 = 0    ⟹ 

    cos(3𝑟) + cos(𝑟) = 0   ⟹    𝑟 = ± 𝜋 4⁄  𝑟𝑎𝑑𝑖𝑎𝑛𝑠 

Similar to (11), eigenstates of 𝑿4 device project onto quadruplet’s eigenstates as: 

(

𝒖
𝒗
𝒘
𝒒

) ⟹ (

𝟎𝟎𝟎

(𝟎𝟎𝟏 + 𝟎𝟏𝟎 + 𝟏𝟎𝟎) √3⁄

(𝟎𝟏𝟏 + 𝟏𝟎𝟏 + 𝟏𝟏𝟎) √3⁄
𝟏𝟏𝟏

) 

The quadruplet eigenvalues are (3𝜋 4⁄ , 𝜋 4⁄ , −𝜋 4⁄ , −3𝜋 4⁄ ). They match eigenvalues of 𝑿4 

device obtained from (10). Eigenvalues 𝜖000 = 3𝜋 4⁄  and 𝜖111 = −3𝜋 4⁄  are non-degenerate, 

while 𝜖001 = 𝜖010 = 𝜖100 = 𝜋 4⁄ , and 𝜖011 = 𝜖101 = 𝜖110 = −𝜋 4⁄  have degeneracy 3. The 

invariant subspaces of 3-qubit are: 

2 ⊗ 2 ⊗ 2 = 4 ⊕ 2 ⊕ 2      ⟺    (

3𝜋 4⁄

𝜋 4⁄

−𝜋 4⁄

−3𝜋 4⁄

) ⊕ (
𝜋 4⁄

−𝜋 4⁄
) ⊕ (

𝜋 4⁄

−𝜋 4⁄
)  

Since input and output cardinality of 3-qubit is 4, the amount of information which can be encoded 

in, and extracted from, 3-qubit, is log2 4 = 2 𝑏𝑖𝑡𝑠, same as amount of information extracted from 

output of 𝑿4 device in unconditional measurement. Matching eigenvalues make information, 

extracted from output of 𝑿4 device and encoded in quadruplet, identical to information extracted 

from quadruplet. Generally, information extracted from output of 𝑿𝑀 device would be encoded in 

cardinality 𝑀 invariant subspace of (𝑁 = 𝑀 − 1)-qubit. 

The amount of [quantum] information 𝑿𝑀 device stores internally, in its input state, is 

log2(𝑀2 − 𝑀 ) 𝑏𝑖𝑡𝑠. Of which, up to log2 𝑀  𝑏𝑖𝑡𝑠 𝑒𝑣𝑒𝑛𝑡⁄  are extracted and converted into 

classical information by measurement. The remaining log2(𝑀2 − 𝑀) − log2 𝑀 = log2(𝑀 − 1) 

𝑏𝑖𝑡𝑠 are unavailable for extraction. The only possibility for all stored information to be extractable, 

is to encode it in 𝑀 = 2 basis, i.e., in a qubit. It follows, only 𝑿2 device, and its 𝑁-qubit variants, 

can be represented by extracted classical information. The state of 𝑿𝑀>2 device is not represented 

by information extracted from its output, as 𝑿𝑀>2 device contains log2(𝑀 − 1) 𝑏𝑖𝑡𝑠 unavailable 

for extraction. 



A search for an example of 𝑿𝑀>2 device points toward living organisms. There are features of 

living organisms which fit the disclosed properties of 𝑿𝑀>2 device: 

1. The measurement of living organism cannot extract all the information. Only the extracted 

classical information is observed [10]. The unextracted information is not represented by 

objective reality. The word mind may be the term for that information 

2. The extracted from living organism information is not sufficient to describe the state of 

living organism. Living organism cannot be reconstructed from extracted information 

3. The extraction of maximum information from living organism is incompatible with the 

state of living [1]: 
 

I have tried to express this situation by saying that every experimental arrangement 

suitable for following the behavior of the atoms constituting an organism in as exhaustive 

a way as implied by the possibilities of physical observation and definition would be 

incompatible with the maintaining of the life of the organism. – N. Bohr 
 

The extraction of log2 𝑀 𝑏𝑖𝑡𝑠 from 𝑿𝑀 device turns device completely into 

classical object, as no more information can be extracted 

Information extracted from output of 𝑿𝑀 device is encoded in values of commuting observables. 

Output of 𝑿3 device in Stern-Gerlach experiment is encoded by operators 𝑡 ∙ 𝑻 and 𝑟 ∙ 𝑹, in 

position of clock hands, as observable 𝑡, and in position of the spot where atomic beam hit detector, 

as observable 𝑟. Separately, the encoded outputs of 𝑡 ∙ 𝑻 and 𝑟 ∙ 𝑹 operators bear no relation to 

each other. Knowing only the position of the spot where atomic beam hit detector, one cannot 

deduce the time when it happened. One would not even know if it happened at all, as the fact of 

measurement is encoded by the other operator, 𝑡 ∙ 𝑻. The spot at the detector screen does not signify 

the measurement event, as one cannot ascertain, without additional information, that the spot was 

not there all along. Conversely, knowing only the time of measurement event, one cannot deduce 

the position 𝑟 of the spot where atomic beam hit detector. There must be an additional information 

establishing correlation between outputs of 𝑡 ∙ 𝑻 and 𝑟 ∙ 𝑹 operators. If there is no encompassing 

measurement, this additional information remains unextracted from 𝑿3 device, in the amount of 

log2(𝑀 − 1) = 1 𝑏𝑖𝑡𝑠/𝑒𝑣𝑒𝑛𝑡, a Boolean value indicating if outputs of 𝑡 ∙ 𝑻 and 𝑟 ∙ 𝑹 operators 

are correlated. This unextracted information is contained inside the mind of a living organism 

represented by 𝑿3 device. 

If there is an encompassing measurement by 𝑿4 device, the facts of measurement by 𝑡 ∙ 𝑻 

operator materialize as current in detector circuit, encoded by 𝛾 ∙ 𝜰 operator of encompassing 𝑿4 

device as observable 𝛾. The facts of measurement by 𝛾 ∙ 𝜰 operator would materialize as current 

of currents, to be encoded by encompassing 𝑿5 device as observable 𝜆. Yet, there is no known 

materialization of information representing current of currents. Perhaps, there is a limit lower than 

log2(𝑀) 𝑏𝑖𝑡𝑠 𝑒𝑣𝑒𝑛𝑡⁄  on amount of information which can be extracted from output of 𝑿𝑀>4 

device. The limit could be from lack of capability to measure current of currents, or it could be of 

3𝐷 observation space only able to accommodate classical information extracted by 3 orthogonal 

measurement operators in (9): 𝑟 ∙ 𝑹, 𝑡 ∙ 𝑻, 𝛾 ∙ 𝜰 [10], constituting traceless, i.e., encoding, part of 



𝑿4 device, with 2 𝑏𝑖𝑡𝑠 𝑒𝑣𝑒𝑛𝑡⁄  limit on extraction of information22. The limit of 3𝐷 observation 

space may account for unavailability of a [classical] device able to measure current of currents. In 

any case, if we accept the premise that 𝑿𝑀>2 device represents living organism, the inability to 

extract log2 𝑀 𝑏𝑖𝑡𝑠 is a life-saver for the organism, as extraction of log2 𝑀  𝑏𝑖𝑡𝑠 would signify 

complete transformation of living organism into non-live classical object. This conclusion helps 

answer question, if it’s possible to create living organism from non-live matter. Creating living 

organism, represented by 𝑿𝑀 device, requires log2(𝑀2 − 𝑀)  𝑏𝑖𝑡𝑠 of information to set its input 

state. This information would have to be extracted somewhere, presumably, from output of 

𝑿𝑀′=𝑀2−𝑀 device. Setting input state of living organism of minimum cardinality 𝑀 = 3 requires 

log2(𝑀2 − 𝑀) = log26 𝑏𝑖𝑡𝑠, while, as suggested above, max 2 𝑏𝑖𝑡𝑠 𝑒𝑣𝑒𝑛𝑡⁄  of classical 

information can be extracted from output of any device. The input state of 𝑿𝑀 device can only be 

set by feeding output of 𝑿𝑀′=𝑀2−𝑀 device directly into 𝑿𝑀 input interface23, without intermediate 

extraction of information from 𝑿𝑀′ device output.  

 
22 It may as well explain why all theories built on 𝑆𝑈(𝑀 > 4) symmetry groups, such as Georgi–Glashow model [18], 

are at odds with objective reality [10] 
23 then the LORD God formed the man of dust from the ground and breathed into his nostrils the breath of life, and 

the man became a living creature, - Genesis 2:7 

https://www.biblegateway.com/passage/?search=Genesis+2%3A7&version=ESV
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